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ABSTRACT

There has been a significant attempt to derive supervised learning models for training Spiking
Neural Networks (SNN), which is the third and most recent generation of Artificial Neural Network
(ANN). Supervised SNN learning models are considered more biologically plausible and thus
exploits better the computational efficiency of biological neurons and also, are less computationally
expensive than second generation ANN. SNN models have also produced competitive performance
in most tasks when compared to second generation ANNs. These advantages, coupled with the
difficulty in adopting the well established learning models for second generation networks to train
SNN due to the difference in information coding led to the recent introduction of supervised learning
models for training SNN.
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SNN methods.

However, lack of comprehensive source of literature detailing strides made in this area, and the
challenges and prospects of SNN serves as a hindrance to further exploration and application of
SNN models. A comprehensive review of supervised learning methods in SNN is presented in this
paper in which some widely used SNN neural models, learning models and their basic concepts,
areas of applications, limitations, prospects and future research directions are discussed. The main
contribution of this paper is that it presents and discusses trends in supervised learning in SNN
with the aim of providing a reference point for those desiring further knowledge and application of
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artificial neural network.
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1 INTRODUCTION

Artificial Neural Network (ANN) since its
introduction in the 1940s [1], evolved over
the years and has since become one of the
most widely used class of machine learning
algorithms. ANN models are biologically inspired
computational models that seek to mimic the
biological learning and information transfer
processes in the human or more generally,
the mammalian brain and are used for solving
complex computational tasks that are difficult or
impossible to be solved manually by humans
[2-4]. Though the mathematical formulations
used to model the behaviour of neurons in
ANN vary, they all sought to mimic the learning
principles and information transfer processes of
biological neurons.

Contrary to modelling of information using
continuous or binary values and activation
function or Boolean gates in the first and second
generation ANN [1], in Spiking Neural Networks,
information is encoded using the precise timing
of spikes and learning modelled around the time
difference between spikes arriving at a neuron,
which is identical to the mode of learning and
information transfer in biological neurons [3].
Neural networks based on temporal coding are
reported to be computationally less expensive
which makes them suitable for implementation on
hardware and also, enable efficient information
transfer and processing than in rate-coded
networks [5, 6].

Attempts have been made to leverage these
advantages of SNN to solve supervised learning
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problems. The first supervised learning algorithm
derived based on the timing of spikes was the
SpikeProp [7], which employed the idea of Error
Back propagation and gradient descent used in
second generation ANN. Several modifications
of the SpikeProp were later introduced as
improvements [8,9]. SNN training algorithms
based on evolutionary algorithms have also been
investigated [10, 11]. Evolving techniques similar
to those used in second generation networks
based on the evolving connectionist system [12]
have akso been explored. The fourth and
important category of learning algorithms for
SNN are those that rely on the Herbian and anti-
Herbian plasticity, which are considered the main
mechanisms governing learning in biological
neurons [13, 14].  Thus, learning algorithms
based on this approach are considered the
most biologically plausible among all categories
of supervised SNN learning models. Most of
these learning algorithms have been successfully
applied to different benchmark and real-world
classification tasks with performance comparable
to some second generation networks and other
algorithms such as those proposed in [13,15,16],
were tested on spike sequence learning; a task
that rate-coded networks can not perform.

Though supervised learning in SNN is an
emerging field with great prospects, literature
in this area is sparsed and scanty. This suggests
that the need for research into supervised
learning in SNN to validate and apply existing
learning algorithms to emerging areas and
also derive improved algorithms can not be
overemphasised. Researchers as well as
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industry players desiring to explore this area
would require a comprehensive presentation
on existing learning algorithms, their prospects
and challenges, main areas of application as
well as pointers to future research directions.
A comprehensive review of state-of-the-art
supervised SNN learning algorithms is therefore
presented in this paper.

This review is focused on algorithms derived
for networks with upto two (2) layers. The
papers are selected to reflect the key learning
concepts that have been extensively explored
since the inception of supervised learning in
SNN. This design allowed us to present the
concepts and key modifications and extensions
made to improve their performance and adopt
them to different learning tasks.

The following contributions are made in this
paper:

* A review of state-of-the-art supervised
SNN learning algorithms is made and
categorised according to the main
learning principles employed in each.

* The challenges and prospects of
supervised learning in SNN is explored
and discussed.

* Open Issues that require further

exploration are also outlined.

The remaining sections of the paper is organised
as follows: A description of some basic learning
concepts employed in SNN and the most widely
used SNN neural models are presented in
Section Il. This is followed by a review of
selected supervised SNN learning algorithms in
Section lll. A dsicussion of relevant obsevrations
from the reviewed literarure and pointers to
future research is dedtailed in Section IV. The
conclusion of the paper is presented in Section
V.

2 CONCEPT OF LEARNING
IN SNN AND NEURAL
MODELS

2.1 Concept of Learning in SNN

The main task in ANN learning is to fit the
weights of synapses in a network given a set of
training data with corresponding target labels (in
supervised learning) or without target labels (in
unsupervised learning), such that the network
can approximate the expected output at the
post-synaptic neuron when a new set of input
data is presented to it. The weights are fitted
using mathematical functions that minimise the
difference between the actual output of the
network and the target output. One key focus
of research in this field is geared towards coming
up with efficient learning models that adopt the
same learning processes that occur in biological
neurons. As a result, ANN has evolved rapidly
over the years towards biologically plausible
learning and is currently in its third generation.

The first generation of ANN was introduced
in 1943, by McCulloch and Pitts [1]. In this
generation, threshold gates also referred to
as McCulloch-Pitts neurons or perceptrons
were used as computational units. Other
implementations in this generation include
threshold circuits (multi-layer perceptrons),
Boltzmann Machines [17], and Hopfield Nets
[18]. Networks based on threshold gates are
considered computationally robust with precise
mathematical definition, and are generic for
computing complex functions in small networks
with binary input and output [19]. The
computational neuron in this network applies a
threshold function on the weighted sum of the
input to generate an output, which is either 0 or
1. Though, networks in this generation served a
critical purpose, their main limitation is that they
could only produce binary output in response to
inputs.

The second generation of ANN also referred
to as rate-based networks vary from the first
basically in two folds; first, they accept real-
value input and generate real-value output, and
secondly output are generated using activation
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functions.  Some commonly used activation
functions are the sigmoid functions defined as

_ 1
flz) = (m) and neurons based on

radial basis functions. Sigmoidal networks can
either be feed-forward or recurrent. Computation
in these networks is in two phases; a sum of
the weighted input values is calculated and an
appropriate activation function is then applied
to the weighted sum to generate the output.
These networks are universal approximators for
analog data and can also compute any arbitrary
boolean function by employing thresholding at
the output neuron, and in certain cases with fewer
gates [19].

Evidence based on experiments conducted in
the field of neuroscience points to the fact that
biological neurons encode information via the
precise timing of spikes and not necessarily
only through the firing rates of neurons as in
rate-coded networks [3, 5,20-22]. Research in
the third and most recent generation of ANN
is focused on how to model computational
neurons to simulate this timing (temporal coding)
property of biological neurons. As explained
earlier, a neural network may contain up to
hundreds of millions of neurons connected to
each other via synapses. These neurons emit
short chemical or electrical signals referred to as
action potentials or spikes to other connecting
neurons. A set of spikes originating from a
presynaptic neuron within a specified time frame
forms a spike train. The number of spikes and
most importantly the timing between them is
what conveys information. The action potential
of a presynaptic neuron is presynaptic potential
and the response of a postsynaptic neuron
to a spike arriving at its synapse at a given
time, ¢ > 0 is called postsynaptic potential
(PSP). The difference between the potential of
a postsynaptic neuron at rest (when it has not
received spikes) and the potential when spikes
arrive at its synapses is the neuron’s membrane
potential (potential difference).

Given that the resting potential of a postsynaptic
neuron, i is u, and its potential in a time course
t > 0iswu; (). Atrest,t = 0, u; (t) = ur. That

is when no spike has arrived at the synapses of
neuron i. At atime, t > 0, where a spike arrives
at the synapse from a presynaptic neuron j, the
postsynaptic potential of i, £;;(¢) is calculated
using equation (2.1) [3],

€ij (t) = U; (t) — Uy (21)

If the value of ¢;;(t) is positive, the postsynaptic
potential is said to be excitatory (EPSP) and
inhibitory (IPSP) when negative.

Each neuron in a network may be connected to
several neurons, and thus can receive multiple
spikes from these neurons. This implies that in
SNN a postsynaptic neuron may be connected
to and hence, receive spikes from multiple
presynaptic neurons. In this case, the cumulative
change of potential in the postsynaptic neuron is
approximately the sum of the potentials evoked
by the spikes from each presynaptic neuron.
Consider a scenario where presynaptic neurons;
Jj = 1,2,3,...,n, each emitting spikes arbitrarily
at time t;f). Where f (f =1,2,3,..., fs), is the
ft" spike of neuron j. Summing over all spikes
and neurons, ¢;;(t) in equation (2.1) becomes

() ;
Z 2f:z-:,-j (t —t; ) Thus, the total postsynaptic
J

potential (PSP) is defined in equation (2.2)

s (1) eij (t — >) fue (2.2)

:ZZ
i f

As shown in equation (2.2), when the total PSP
of Neuron ¢ reaches a given threshold, ¥, it
emits a spike (action potential) via its axon to the
dendrites of adjoining neurons.

2.2 Spiking Neural Models

The dynamics of spiking neurons are modelled
using biologically plausible mathematical neural
models in which the well studied models include:
Hodgkin-Huxley (HH) model [23], Integrate-and-
Fire (IF) models [3, 4], Izhikerich’s (Iz) model
[3,24], and Spike Response Model (SRM) [3, 4].
A brief description of these models is presented
here, a detailed description can be found in [3,4].
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The HH model is considered the most biologically realistic model among the models listed above. The
HH model, though biologically realistic is very difficult to simulate with SNN because of its complexity.
HH models the transmission of information in biological neurons using electrical circuits and is defined
by equation (2.3)
du 3 4

C’E = —gnam’h(u— Ena) —grn” (u—FEx)—gr (u—EL)+1(t), (2.3)
where C' is the membrane capacitance; u the voltage across the capacitance C'; the parameters g,
gk, and g, are the conductance of the various ion channels (Sodium (Na), potassium (K), and an
undefined leaky channel); and m, h, and n are probabilities that determine the opening of the Na and
K channels.

The IF models are a simplified form of the HH model making them less complex and easier to simulate
as compared to the HH models. The form of action potentials are not considered in IF models and
spikes are only defined by their firing time, ¢). The IF model is defined by an electrical circuit
modelled by equation (2.4), where C is the capacitor, R a resistor connected parallel to C' and driven
by the current I (t)
@ — ,l — 2 4
Cdt* R(u(t) ur) +1(2). (2.4)
Introducing the membrane time constant of the neuron, ,,, = RC, equation 2.4 can be rewritten as
equation (2.5)
Tm% — e —u(t)+ RI(1). (2.5)

Equation (2.5) defines the Leaky-Integrate-and-Fire (LIF) neuron model. The LIF neuron fires a spike
at time ¢¥) when the condition u (t‘f)) = ¥ is satisfied with «’ (t(f)) > 0. The potential is reset to a
resting position u, < ¢ after t\/).

There are other variants of the IF neuron model such as the Quadratic-Integrate-and-Fire and the
Theta neuron models [3, 4].

The 1z model is defined by two differential equations as in equation (2.6) and (2.7). They are
not as computationally complex as the HH model and thus represent a valuable trade-off between
computational complexity and biological plausibility

du

= = 0.04u ()% + 5u (t) + 140 — w (¢) + 1 (¢), (2.6)
dw
ikl (bu (t) —w (1)), (2.7)

with an after-spike resetting defined by Equation (2.8):

u(t) < ¢

; (2.8)
w(t) <~ w+d

if u(t) > v, then {
where w(t) is the membrane recovery variable and a, b, ¢, and d are dimensionless parameters.

The last amongst the most widely used neuron models is the Spike Response Model (SRM). The
SRM is more generic when compared to the IF model, easier to understand and implement, and
competes favourable with the HH model when simulating complex neuronal properties. The simplest
form of the SRM is expressed in equation (2.9).
uj(t) =ni(t — ;) +

Z wijs(t — t;' — dlj) (29)

iel’;
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The kernel functions n; and ¢;; model the reset
of the potential after a spike and the membrane
potential respectively, £; is the last firing time
of the postsynaptic neuron j, w;; the synaptic
weight, #; the firing time of the presynaptic neuron
i, I'; the set of presynaptic neurons connected
to neuron 7, and d;; is the delay associated with
axonal transmission.

3 SUPERVISED LEARNING
IN SPIKING NEURAL
NETWORK

Supervised learning, though has been

successfully studied in second generation ANN
for more than six (6) decades [25, 26], and has
evolved to become one of the most sophisticated
learning approaches in machine learning, its
study in SNN and applications to real world tasks
is still at the early stages. Existing supervised
learning rules in SNN can be categorised with
respect to the network structure (the number
of layers in the network) they are derived for,
which directly influence the type of task they
can solve; the mathematical principles based
on which they are derived, which influences the
biological plausibility of a given rule; and the
number of spikes neurons in a network can emit,
this also determines the quantum of information
flow in the network. A review of some major
supervised learning models for spiking neural
networks is presented below and categorised
according to the learning principles employed. A
summary of the reviewed papers is presented in
Table 1.

3.1 Error Back Propagation and

Gradient Descent Based
Learning Models

The first successful supervised learning rule for
spiking neural network called the SpikeProp, was
introduced less than two (2) decades ago by [7].
The rule was derived for multi-layer networks with
single spiking neurons mainly for classification
tasks. The SpikeProp was derived using training
mechanisms similar to the classical Error Back
Propagation method used in second generation

ANN. It relied on the definition of an error-function
using the time difference between desired output
spike time t{ and actual output spike time ¢§
of an output neuron j. The error-function is
defined using the least mean squares error-
function given as £ = } > (t§ — t§)>. The error
j€J

is then back propagated into the hidden layers
of the network and minimised by optimising the
synaptic weights.

Following the successful implementation of the
SpikeProp algorithm, several variants of it such
as; Back Propagation (BP) with momentum
[8], QuickProp [9], Resilient Propagation [9]
were proposed as modifications of the original
SpikeProp algorithm with the core aim of
improving the convergence rate and classification
accuracy. However, a major challenge in these
rules, similar to the SpikeProp, is that output
neurons could only emit at most a spike.

[27] on the other hand proposed a learning rule
called the Tempotron in which input signals are
classified based on the presence or absence
of a spike in the output neuron. They defined
error-functions based on the output neurons
maximum voltage and threshold voltage contrary
to desired and actual output spike times in the
SpikeProp, in that, for input signals that the
neuron is supposed to emit a spike in response
but there is no spike the error is defined as
Vin — V (tmaz) and for input signals belonging to a
class in which the output neuron is not supposed
to emit a spike but there is a spike the error-
function V (tmaez) — Vin is used. V;, denotes
the threshold voltage and V (¢max) the maximum
voltage recorded within the period Tms at time
tmaz- The gradient descent algorithm is used
to minimise the error functions in the course of
training and the synaptic weights are updated (i.e.
increased or decreased) to induce or cancel a
spike according to Aw; = A K (tmaz —ti)-

ti<tmazx

The Tempotron as mentioned above is restricted
to training a single neuron to emit 1 or no
spikes in response to precise input spike times
belonging to different classes within a given
interval. Modelling the Tempotron around the
presence or absence of spikes limit the ability of
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such neurons to convey information via its output
to other neurons. As an improvement to the
Tempotron, [28] proposed the Chronotron that
relied on the distance between a neuron’s actual
output spike train and a desired spike train using
the Victor-Purpora (VP) distance metric [29],
which is "the minimum cost of transforming one
spike train into the other by creating, removing
or moving spikes” [28]. The cost function is
defined as a modification of the VP distance.
Two learning methods were investigated using
their approach; the E-learning and I-learning
rules. In the E-learning rule, the error function
is minimised by performing piecewise gradient
descent while the I-learning draws its inspiration
from the E-learning and ReSuMe [13] rules in
that a neuron is trained to emit target spike trains
via synaptic changes that are proportional to
synaptic currents at the timings of real and target
output spikes.

More recently, [30] proposed a multi-layer single
spiking learning rule. Using the neural model
defined in equation (3.1), they projected that the
time of the first spike of the output neuron can
be estimated using equation (3.3) following (3.2).
Equation (3.2) is mapped into the z — domain as
presented in equation (3.4)

= Z wiiy  k(t—t7),

where dV7 is the membrane potential of output
neuron j, wj; is the weight of the synapses
connecting input neuron 4 to output neuron j, k
models the membrane potential, and ¢; is the
firing time of presynaptic neuron i,

dVi(t)
dt

(3.1)

S wieap(ti)
o) = cmiel TP 2
erplty) = RELETED - (32)
: i t;
b= n (e wiemp(t)) g g
e wi—1
Dier WiZi
o= el 4
“ Zie[ Wi — 1 (3 )

where z, = exp(to), zi = exp(t:), and w; are
the synaptic weights of input neurons that have
spikes preceding ¢,. They defined a cost function
based on this and used Error Back propagation
approach to optimise the synaptic weights. They
evaluated their method on some classification
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task and reported interesting results. However,
similar to the SpikeProp and Tempotron, single
spiking neurons were used in this study.

Due to the limitations of single spike networks,
there have been extensive research into
extending some of these learning rules into
multi-spiking rules as well as the proposition of
new multi-spiking learning rules mainly for the
purpose of data classification. This is desired
because multi-spiking neurons can convey more
information than single spiking neurons and are
capable of learning any non-linearly separable
data [31], which is a characteristic desired in all
learning algorithms. In this regard, [32] and [33]
respectively, modified the multi-layer SpikeProp
learning rule to allow neurons in the input and
hidden layers to fire multiple spikes. However,
neurons in the output layer could only fire single
spikes due to the difficulty associated with
defining appropriate error functions for multiple
spikes at the output neuron.

[34] proposed the first learning rule that allowed
neurons in all layers of a multi-layer network to
fire multiple spikes. The learning rule was derived
using the error back propagation method. This
rule, just like other error Back Propagation based
rules is not biologically plausible, is difficult to
train, particularly, when the number of spikes in
the desired (output) spike train increases and
also could only produce stable performance with
a maximum of two (2) spikes per class label in the
output neuron.

3.2 Evolving SNN and Evolutio-
nary Algorithm Based
Methods

The second group of SNN learning methods are
those that employed evolving and/or evolutionary
techniques for training. These come in two
folds: Those that used evolving SNN (eSNN)
architecture together with evolutionary algorithms
for network feature and parameter optimisation
[12, 35-37] and those that used evolutionary
algorithms for direct synaptic weight optimisation
[10,11,38-40].
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The learning principles of eSNN is derived from
the classical Evolving Connectionist Systems
used in second generation neural networks.
In eSNN, spiking neural models are used to
model neural activities. To train an eSNN, an
output neuron repository is initialised, and for
each input sample belonging to a class, a new
neuron is trained. The weight of the newly trained
neuron is compared to weights of neurons in the
repository and if there is an existing neuron in
which the Euclidean distance from its weight to
the weight of the new neuron is the least and
less than a given threshold the two neurons
are considered very similar and their weights
and firing thresholds are merged according to
specified rules. If no neuron is close enough to
the new neuron it is added to the repository as
a separate neuron. This process is carried out
for all samples in the training set as the network
evolves with each input sample. This process
iteratively creates repositories; a repository for
each class, which enable the acquisition of

knowledge as and when it is available without
the need to retrain with already learned samples
[12,35-37].

[35] investigated an on-line learning procedure
for SNN using a three (3) layer network. In their
approach, an output map is created for each
input sample propagated into the network and the
weights between the output and hidden neurons
are trained using equation (3.5)

wd n
ij,i _ modm er(aj)

(3.5)

where w;,; is the weight between neuron j of the
hidden layer and neuron i of the output layer,
mod € (0,1) is the modulation factor, order(a;)
is the order of arrival of spikes from neuron j
to neuron i. If there is an existing map that
meets a similarity test with the newly trained
map, the weights (W) and Postsynaptic threshold
(PSPinresnola) are merged using equations (3.6)
and (3.7) respectively.

_ WMGPc(k-) + NsamplesW]\/Tapc(km,m“aT)

- 3.6
1 + Nsamples ( )
1: Sl A{apc . + NsamplesPSP]\/[ap T
PSPy, 4 = (k) C(ksimilar) 37
threshold 1+ Nsamples ( )

Whtape () @nd PSPhrape,, are weights and Postsnaptic Potential of neurons in the newly trained map
while Watapc (aimitary @8N PSPrapc gaimiar @re that of the most similar existing map, Nsampies S
the number of instances that have already been used to train the network.

[36] on the other hand proposed an On-line eSNN (OeSNN) and investigated the suitability of
combining data reduction techniques with on-line eSNN to regulate activities in the output repositories.
In the OeSNN, in addition to finding existing neurons that met a distance criteria with newly trained
neurons and merging their weights and threshold using similar mechanisms outlined in [35], if the
distance criteria is not met, the newly trained neuron is added to the repository if the number of
neurons in the repository at a particular point is less than a predefined repository size else the oldest
neuron is replaced with the new one. This update mechanism was adopted to enforce the need for a
restricted reservoir size and also eliminate the tendency to forget to discard outdated concepts when
data streams are non-stationary. They further proposed and investigated other repository update
mechanisms that eliminates the need for distance-based measures to determine which weights and
thresholds to merge by employing data reduction techniques to determine candidate neurons for
replacement whenever the upper boundary condition is met in a passive approach or a concept drift
detection mechanism turns true in an active learning approach. The introduction of data reduction
techniques was mainly to eliminate the shortfalls of relying on distance-based measures to determine
candidate output neurons in repositories to merge or replace with newly trained neurons.
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Evolutionary algorithms were later introduced
into this learning paradigm to enable feature
selection and network parameter optimisation
[41-45]. In each evolution of the evolutionary
algorithms in these studies, a sub feature space
is selected and used to train an eSNN and
the feature space, network parameters and
performance are adapted by the evolutionary
algorithm. This process is repeated in
each evolution and the appropriate search
operators applied according to the optimisation
principles of the chosen evolutionary algorithm.
The introduction of evolutionary algorithms is
reported to have led to an improvement in
performance of eSNNs [12]. Several evolutionary
algorithms have been explored in this regard
and notable among these is the work presented
by [41] in which the Versatile Quantum-inspired
Evolutionary Algorithm (VQEA) [46] is used in
combination with eSNN learning mechanisms
for a simultaneous selection of relevant feature
subsets and optimisation of eSNN parameters
following the wrapper approach [47].

Different from the use of hierarchical multi-model
Estimation of Distribution Algorithm (hMM-EDA)
in [41], [42], proposed a similar eSNN model but
employed a Quantum inspired Particle Swamp
Optimiser (QiPSO) for both feature selection and
parameter optimisation. A modified version of
the QiPSO dubbed the Dynamic QiPSO, in which
the classical PSO algorithm is combined with
QiPSO to enable a parallel exploration of the
search space was proposed in [43,44]. [45], also,
proposed a hybrid learning scheme that merged
the Harmony Search (HS) algorithm [48] and
eSNN architecture for data classifications tasks.
In their case the HS algorithms was used to
search for optimal values of the main learning
parameters of the eSNN, which include the
similarity value, modulation factor and proportion
factor. Unlike the afore mentioned studies, the
method proposed by [45] did not support dataset
feature selection.

Contrary to the above approach to learning
where evolutionary algorithms are hybridised
with eSNN, the methods introduced by [10,
11, 38—40], used the evolutionary methods as
a means of training synaptic weights. [38],
made use of Differential Evolution, which is

a novel minimisation technique that has the
capability to solve non-differentiable, non-linear,
and multimodal objective functions. Their
approach starts by randomly initialising a defined
number of sub-populations of weights in [-
1 1]. Al sub-populations are then evolved
independently in parallel and in each generation
the weights undergo mutation and selection. This
evolutionary process is continued until a stopping
criterion is met. They tested their approach
using three (3) benchmark problems: The XOR
problem, Diabetes and Iris datasets problems,
which are classification problems and reported
good results that are comparable to that of
multilayer perceptrons and also trained with fewer
network weight when compared to the SpikeProp
method (6 weights against 320 for SpikeProp in
the XOR problem).

[10], also proposed a novel spiking neural
network learning method using an evolutionary
strategy. They optimised both synaptic weights
and delays by minimising an error function
defined as: F = I _ (t2(t) — ti(t))?; where

;;( (t) (t))

t&(t) and ti(t) are the actual and target spike
times respectively, of an output neuron for a
pattern ¢, and the total number of patterns in
the training set denoted by 7. They asserted
that their choice of an evolutionary strategy over
other methods such as the genetic algorithms is
due to its ability to process real values without
the need to convert them into binary form. They
used Gaussian and Cauchy mutation schemes,
and tournament selection and elitism to create
new population for succeeding generations.

[11, 39, 40] employed nature-inspired meta-
heuristic algorithms to search for optimal synaptic
weights that maximised the classification ability
of the SNN. These papers followed a similar
concept for neural signal generation where input
patterns 2 are transformed into signals of
the form I = zwy, where w is the weight
connecting pre and post-synaptic neurons and
~ is a gain factor that assists the neuron to
fire. Following this, the Cuckoo Search algorithm
[49], Artificial Bee Colony algorithm [50], and Bat
algorithm (BA) [51] were utilised by [52], [39], and
[11] respectively, to search for optimal synaptic
weights.
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3.3 Spike Timing Dependant Plasticity Based Methods

The Remote Supervised Method (ReSuMe) [53], is one of the first biologically plausible learning
rules derived for single layer networks in which neurons in the network can emit multiple spikes. The
learning rule is derived using STDP (Hebbian) and anti-STDP (anti-Hebbian) processes [2]. The rule
is governed by equation (3.8)
d oo
awm‘(t) = [Sd(t) — So(t)] |:ad +/ adi (S)S-L(t — s)ds s (3.8)
0
where Sg(t) and S,(t) denote the target and actual output spikes, respectively, aq is a non-Hebbian
term that controls the amount of synaptic weight change, and a4 (s)S;i(t — s) is a kernel.

This rule implements a spiking version of the Widrow-Hoff algorithm for rate-based neurons [26].
ReSuMe was derived to overcome some key functional limitation of the first supervised learning rule,
the SpikeProp [7]. These include, the minimisation of the error between the target and actual spikes
without the need for gradient calculations, which eliminated the difficulty in defining cost functions
and the computational requirements of gradient decent based methods. Unlike the SpikeProp, which
is tied to the SRM model, ReSuMe is neural model independent and can be used to simulate any
neural model. Also, neurons in the network could fire multiple spikes thus, making it suitable for
solving different supervised learning tasks such as spike sequence learning and data classification.
However, with the ReSuMe, convergence is not guaranteed when the number of spikes in the output
spike train exceeds one (1).

Following the uncertainty regarding convergence in ReSuMe with respect to multiple spikes in an
output spike train, [15, 16], modified it to include delay learning as defined in equation (3.9), which
they called Delay Learning-ReSuMe (DL-ReSuMe) and Extended Delay Learning-ReSuMe (EDL-
ReSuMe), respectively. Their methods resulted in a significant improvement in both the accuracy and
time requirements compared to the ReSuMe. DL and EDL-ReSuMe, like the traditional ReSuMe,
are single layer learning rules and also suffered a significant loss in performance when the learning
period, T is extended beyond 500ms under their experimental settings.
d

awoi(t) = [Sa(t) — So(t)] {ad + /000 Tw(s)s:(t — dt; — s)ds| (3.9)

where dt; defines the synaptic delay associated with synapse .

Another learning method that made use of the Widrow-Hoff rule is the Spike Pattern Association
Neuron (SPAN) [54]. Instead of adopting the Widrow-Hoff rule into the spatio-temporal domain
as done in the ReSuMe, [54] rather convolved the temporal coded spike times into analog signals
and directly applied the Widrow-Hoff rule to adjust synaptic weights in the course of training. They
successfully applied the SPAN to spike sequence learning and classification tasks in the presence of
noise.

Though the ReSuMe and its variants have been successfully applied to a variety of tasks, their
efficient application to classification tasks is hindered by the number of network layers they are defined
for, particularly on non-linearly separable datasets. It has been asserted that single layer networks
are unable to efficiently handle complex classification tasks [31, 34].

[31], proposed the first biologically plausible multi-layer network learning rule in which all neurons

could fire multiple spikes. They combined the error function definition used in gradient descent to
the learning process used in ReSuMe to form the new learning rule. Though this learning rule is
more biologically plausible than the rule presented in [34]. This learning rule also recorded a drop in
performance when the number of spikes in the desired spike train increases.
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Table 1: Summary of Reviewed Papers

Arficle leura Learning Method Num. Tnput Coding Oulpul Coding Tasks
Model of (# of Spikes)
Layers
Gradient descent 2 Fopulation coding Precise Liming (1) Classilication

SpikeProp] SHM
T Wil

radient descent 'opulation ondlng

Precise timing (1)

Classificafion

Momentum)
9] (QuickProp) SBM E rror-gradient 2 Binary/Population coding Precise timing (1) Classilication
[B] (Resilient  SRAM Gradient descent 2 Binary/Fopulation coding Precise timing (1) Classilication
Pro
(Tempotron]  LIF Gradient descent T Population coding Presence of  Classilication
absence of a
spike (1)
[Z8] (Chronotron) SR Flecewise gradient 1 Gaussian distrbuation muliple (1—3) Spike pattern &
307 non-LTF %arggleenrgt descent Z Population coding Time of Tirst spike %Iassdncatlon
1
[3Z] (MuSpiNN] SR Gradient descent 2 Fopulation coding E:'r::emse fiming (1] Classilication
[33] SHM Gradient descent 2 Spike fime coding ime of Tirst spike pike paftern
Poisson process classification
A [GMSES, SRM Gradlent descent z Population (GRF) Precise iming [2) __Classiicanon
35 Thorpe Evalving 2 Rank order populafion  Time of Tirst spike assificafion
codin
[36] Thorpe Evoling + dala 1 F'opu'?atlon GRF) Time of Tirst spike  Classilication
Orpe VO |n‘?gn + wOEA 1 GRF population Time of Tirst spike Classificafion
far feature
selection and
parameter
optimisation
[42] Thorpe Evolving + 1 GRF population Time of first spike Classification
QiPS0 for
feature  selection
and parameter
optimisation
[33.44] Thorpe Evoling + 1 Population (SHF) Time of lirsl spike  Classiicaton
DQiPS0O for
probabilistic
feature selection
and parameter
optimisation
[45] Thorpe Evolving + HSA 1 Population (GRF) Time of first spike Classification
for optimal
network parameter
T3E] AT i T Normanssd SABOE — NUmbEr of Spikes — Classmcaion
Ewvolutionary wvalues over learning
interval
707 SHT Evolulionary Z Sparse & 1-Dimensional  Precise tming (1) Classimnicaton
strateqy ding
397 = Cuckoo search 1 Tnpul current Wuliple  spikes  Classiicaton
algorithm ifiring rate)
[40] LIF Artificial Bee 1 Input current NuTtiple spikes  Classificafion
Colony (fireing rate)
[T1] LIF &1z Bat algorithm 1 Tnput current multiple spikes  Classificafion
firing rate
T3] CIF HH, & STOFAanil-STDF 1 L’rec?se ! fiming Splke sequence
Iz (maodel (multiple) & Classification
independent)
[15] LIF STOF/anti-STDP 1 Fandom spike train using Frecise timing Spike pattern
with delay shift Poisson process (multiple)
[T6] LIF STOF&ant-STDOF 1 Random spike train using Precise timing Spike pattern
with delay shift and Poisson process (multiple)
multi-delay -value
adjustmet
5] - Gradient descent T Hamdom generaied  Evenly spaced  Spike patern
spikes multiple spikes association &
Tanti- BpUEtion | fecise tming | assihication
Iz (model STDP/Gradient
independent) descent
S CIF STOFAn-SToOP Z Fopulation (GRF) Precise fiming  Classificaton
multiple)

More recently, [14], presented another multi-
layer multi-spiking learning rule. They adopted
and modified the ReSuMe learnig method to
enable all neurons in all layers of a multi-layer
network to fire multiple spikes. Unlike the rule
presented in [31], they considered spikes fired
by neurons in the hidden layer when training
hidden layer weights.  Similar to the multi-
spiking rules proposed earlier, they assessed the
performance of the rule by applying it to some

benchmark datasets and the results recorded
were comparable to some second generation
networks.

4 DISCUSSION

From the literature presented above, supervised
learning models in SNN are derived to solve
two (2) main categories of tasks including spike
sequence leanring and data classification. The
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experimental results reported in these areas
showed that supervised learning in SNN is
a viable alternative to traditional ANN due
to its lesser computational requirements and
comparable classificatiction performance, which
when well exploited can change the dynamics of
leraning in ANN.

Spike sequence learning which is demostrated to
be suitable for implementation in neuromorphic
systems due to its scalable nature and closeness
to biological neural behaviour is another plus
in SNN [13], a task which is not possible in
traditional ANN. Though spike sequence learning
is demostrated as an important attribute of
SNN, it is only single layer learning models
based on the WidrowHoff rule that have been
demostrated to be most suitable for such tasks
[13, 16, 16]. Learning models that are derived
using optimisation and other meta-heuristics
techniques [7, 10, 38], are not suitable for spike
sequence learning because it is extremely
difficult to define appropriate cost functions
to minimise errors in spike trains due to their
discrete nature.

With regards to data classification, all categories
of learning models were successfully applied and
each produced very competitve experimental
results when compared to some second
generation networks and other machine learning
algorithms on benchmark classification tasks.
Within the different categories of SNN learning
models considered in this paper, they all
produced relatively comparable performace
across all datasets used to test them. The
benchmark classification problems that have
been extensively used to test most of the models
are the XOR problem and the Fisher Iris dataset
[55].

There is a general assertion in literature that
sought to link the number of layers in a
network and the number of spikes neurons can
emit to the performance of learning models on
classification tasks [31]. However, experimental
results recorded in studies that proposed models
for training multilayer networks with multispiking
neurons such as [14,31] are not better than single
spiking models for both single and multilayer
layer networks such as [10,40]. This suggests
that there is a need to conduct comprehensive

evaluatory studies to confirm if indeed multilayer
networks with multispiking neurons are superior
to networks with other structures and at what
point and complexity of data the difference is
significant. Another issue that needs attention
is the lack of significant attempt to investigate
the impact data centric problems such as the
class imbalance problem and outliers have on the
performance of SNN models.

5 CONCLUSION

SNN is the newest generation of ANN. It
presents so many advantages over classical
ANN including its closeness to biological neural
activities in terms of information encoding and
neural activity modelling. There is a good number
of research work that sought to leverage on the
advantages of SNN to solve supervised learning
tasks. These research works are however
sparse in literature and with so many unresolved
critical questions. This paper therefore surveyed
state-of-the-art supervised learning models for
SNN, highlighted their limitations and provided
foresights for future research in the form of
open issues. The surveyed learning models
are grouped with respect to concepts based on
which learning is done and include; those that
used methods similar to classical error back
propagation technique used in second generation
ANN; those that relied on evolutionary algorithms
and evolving neural network approach; and
the final category are those that employed
biological plausible mechanisms such as the
spike timing dependant plasticity approach. It
is established that, methods employing spike
timing dependant plasticity approach allowed
neurons in the networks to emit more spikes
than the other methods. A key issue that need
further exploration is to experimentally establish
the impact of desired output spike train and
network layers on classification accuracy of SNN
models. This will confirm the assessing made
in literature that multi-spiking learning models
for multi-layered networks are required to solve
certain classification tasks.
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