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ABSTRACT 
 

Perturbation in antioxidant status which often leads to inflammation of liver cells and alteration in 
activities of purinergic enzymes are common outcomes of ethanol intoxication, this makes any 
compound that is able to prevent or repair the redox imbalances induced by alcohol intoxication a 
potential therapeutic measure. Hence, this study aims to assess the effect of diphenyl diselenide 
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(DPDSe) on oxidative stress indicators, inflammatory genes and activities of purinergic enzymes in 
ethanol intoxicated male Wistar rats. 10mg/kg DPDSe was administered orally 30 minutes before 
and after a single dose of 13 ml/kg (28% ethanol solution) was given to the rats. Thereafter, the 
antioxidant status, activities of purinergic enzymes and expression of redox-sensitive genes in the 
rats were evaluated. It was observed that ethanol evoked high production of lipid peroxidation with 
concomitant decrease in thiol level, increased Nucleotidase and NTPDase activities, it also causes 
the downregulation of Nrf2 and upregulation of (NF-kB), however, pre- and post-treatment with 
DPDSe caused a reversal effects on the biochemical parameters and molecular parameters 
evaluated respectively. The reversal of ethanol-induced changes in biochemical parameters, 
expression of genes linked to inflammation and antioxidant status in the liver of acute ethanol 
intoxicated rats by DPDSe suggests that it has high prospect as a suitable therapeutic agent for 
hepatotoxicity linked with acute ethanol intoxication.  

 

 
Keywords: Antioxidant; inflammation; ethanol; perturbation. 
 

1. INTRODUCTION 
 
Ethanol intoxication has complex effects on 
living cells. To explore the molecular events 
associated with ethanol intoxication, several 
studies have focused on the role of redox-
sensitive genes, such as Nrf2 and NF-kB. These 
genes have been shown to be modulated by 
ethanol, contributing to its inflammatory effects 
[1,2]. Another mechanism by which ethanol 
induces toxicity is through the alteration of 
enzymes in the purinergic pathway. Enzymes 
such as 5’-nucleotidase and nucleoside 
triphosphate diphosphohydrolases (NTPDase), 
which are critical indicators of liver disease, are 
significantly affected by ethanol intoxication [3]. 
Research has documented that ethanol 
increases the activity of these enzymes in the 
platelet cell membrane, as they are sensitive to 
redox imbalances, with heightened activity 
observed during acute ethanol intoxication [4]. 
 
Although endogenous antioxidant systems 
provide some protection against oxidative 
damage, the excessive production of free 
radicals can overwhelm these systems, 
necessitating external sources of antioxidants. 
Exogenous antioxidants, such as flavonoids 
found in plants, have been shown to mitigate the 
effects of ethanol intoxication [5,6]. Specifically, 
studies have demonstrated the protective effects 
of quercetin and green tea extracts on diseases 
linked to ethanol intoxication by reducing lipid 
oxidative damage and enhancing antioxidant 
enzyme activity [6,7,8]. These findings confirm 
that oxidative stress is a key mechanism of 
ethanol intoxication [9,10], and the protective 
effects of phytochemicals are primarily due to 
their antioxidant capabilities. However, the use of 
plant-derived antioxidants poses challenges, 
including the potential for oxidation in the 

presence of oxygen and contamination with 
metals, which can turn them into pro-oxidants 
[11]. 
 

To address these issues, synthetic antioxidants 
have been explored and have shown 
effectiveness in reducing oxidative stress-related 
pathologies [12,13]. For example, research into 
the antioxidative properties of organoselenium 
compounds has gained traction, as glutathione 
peroxidase (GPx), a potent endogenous 
enzymatic antioxidant, relies on selenocysteine 
at its active site for activity [14]. Diphenyl 
diselenide, one of the most studied 
organoselenium compounds, has demonstrated 
significant antioxidant properties [15,16] and has 
been used to alleviate diseases related to 
oxidative stress [15,17]. Studies have confirmed 
its ability to mimic glutathione peroxidase activity 
[18,19], helping to reduce hydrogen peroxide 
and lipid peroxides to water and corresponding 
alcohols, similar to the action of endogenous 
GPx. 
 

While diphenyl diselenide has been applied in 
the management of various oxidative stress-
related pathologies, its effects on acute ethanol 
intoxication in male Wistar rats are not well 
understood. Therefore, this study aims to 
investigate the potential influence of diphenyl 
diselenide on acute ethanol intoxication in the 
liver of male Wistar rats. 
 

2. MATERIALS AND METHODS 
 
2.1 Chemicals 
 
Diphenyl diselenide, trichloroacetic acid (TCA), 
Dithiothretol (DTT), Tris salt, dithio-bis-(2-
nitrobenzoic acid) DTNB, ethanol and other 
chemicals were gotten from Sigma Chemical Co. 
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USA. Other chemicals were purchased from 
standard suppliers. 
 

2.2 Experimental Animals 
 

Male adult Wistar rats (120-150 g) were 
purchased, acclimatised at the Animal House of 
the Department of Biochemistry, The Federal 
University of Technology, Akure, Nigeria, for 2 
weeks and used in the entire experiment 
according to standard guidelines of the 
Committee on Care and Use of Experimental 
Animal Resources.  
 

2.3 Estimation of Ethanol Influence on 
Thiol Oxidation Induced by DPDSe In 
vitro 

 

The influence of ethanol on the in vitro activity of 
diphenyl diselenide (DPDSe) induced thiol 
oxidation was carried out by measuring the 
formation of 2-nitro-5-thiobenzoic acid (TNB) at 
412 nm. 
 

2.4 Experimental Design (In vivo) 
 

The study of DPDSe influence on acute 
intoxication by ethanol after 6 hours of treatment 
was carried out. The rats were divided into five 
groups (n=6) and allowed to acclimatize for two 
weeks, after which group 1 (Control) was 
administered distilled water, group 2 was treated 
with 10 mg/kg DPDSe only, group 3 induced with 
a single oral dose of 8 g/kg ethanol, group 4 was 
pretreated 30 minutes with 10 mg/kg DPDSe 
before induction with a single oral dose of 
10ml/kg of 28% ethanol solution,  group 5 was 
post-treated with DPDSe  30 minutes after a  
single oral dose of 8g/kg ethanol induction, the 
experiment was terminated 6 hours after the 
treatment with ethanol. 
 

2.5 Lipid Peroxidation Assay 
 

Lipid peroxidation was measured as 
thiobarbituric acid reactive substances (TBARS). 
TBARS were determined in tissue homogenates 
as previously described [20,21]. MDA values 
were determined using the absorbance 
coefficient (1.56 · 105 /cm/mmol) of the MDA–
TBA complex at 532 nm. 
 

2.6 Thiol Oxidation 
 

The thiol oxidation was determined in the 
presence of 50 mM Tris HCl pH 7.4 in both 
proteinized and deproteinized samples. The rate 
of thiol oxidation was evaluated by measuring 

the disappearance of SH-group. The free SH-
group was determined by Ellman [22]. 
 

2.7 5’-Nucleotidase and NTPDase like 
Activities 

 
The 5’-Nucleotidase activity was determined in a 
reaction medium essentially as described by 
Heymann et al. [23]. The reaction was initiated 
by the addition of AMP and ATP to a final 
concentration of 2.0 mM for both enzymes 
(NTPDase and 5’-Nucleotidase) respectively. 
The assays were stopped by the addition of 250 
µl of 10% trichloroacetic acid (TCA). Inorganic 
phosphate was measured by the method of 
Fiske and SubbaRow [24]. Control experiments 
were carried to correct for non-enzymatic 
hydrolysis of the nucleotides. All samples were 
run in duplicate and Enzyme-specific activities 
are reported as nmol Pi released/min/mg of 
protein. 
 

2.8 Gene Expression Analysis using 
Real-time Quantitative Polymerase 
Reaction  

 

TRI Reagent (Zymo Research, USA) was used 
to extract total RNA from the tissues. 1 mg of 
RNA was used to make cDNA in a three-step 
reverse transcriptase reaction with the 
ProtoScript II First Strand cDNA Synthesis Kit 
(BioLabs, New England) at 65 ◦C for 5 min, 42 ◦C 
for 1 h, and 80 ◦C for 5 min. Table 1 lists the rat 
cDNA primers (Inqaba Biotec, Hatfield, SA) that 
were utilized for PCR. Solis BioDyne Reverse 
Transcriptase RT qPCR System and FIREPol ® 
Master Mix (BioLabs, New England) were used 
to perform real-time quantitative PCR (RT-
qPCR) according to the manufacturer’s 
instructions. The following were the PCR 
conditions: 95 ◦C for 3 min, followed by 40 cycles 
of 95 ◦C for 15 s, 60 ◦C for 30 s, and 72 ◦C for 30 
s. The relative quantity of cDNA was measured 
using the comparative cycle threshold (DDCT) 
method. The relative expression level of each 
gene was normalized using the β-actin gene. 
 

2.9 Statistical Analysis 
 

The results of replicate readings were pooled 
and expressed as mean ± standard deviation 
(S.D). One-way Analysis of Variance (ANOVA) 
was used to analyze the results followed by 
Turkey’s post hoc test, with levels of significance 
accepted at p < 0.05. All statistical analyses 
were carried out using the software Graph pad 
PRISM (V.5.0). 
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Table 1. Primer sequence for Real - time quantitative PCR 

 

S/N Gene Sequence 

1 β-actin Forward: CTCCCTGGAGAAGAGCTATGA  

  Reverse: AGGAAGGAAGGCTGGAAGA  

2 NFKB Forward: AGACATCCTTCCGCAAACTC  

  Reverse: TAGGTCCATCCTGCCCATAA 

3 Nrf2 Forward: ACGTGATGAGGATGGGAAAC  

  Reverse: TATCTGGCTTCTTGCTCTTGG 

 

3. RESULTS 
 

3.1 Influence of Acute Ethanol 
Intoxication and Diphenyl 
Diselenide on Biochemical Indices 
of Oxidation Stress 

 
3.1.1 Influence of DPDSe on ethanol-induced 

reduction in total thiol level in vivo 
 
Fig. 1 shows that ethanol intoxication causes 
reduction in total thiol level by 2.3 times in 
relation to the control and that both pre-and post-
DPDSe treatment markedly (p<0.05) reverse the 
ethanol- induced decrease in the in vivo thiol 
level. 
 
3.1.2 Influence of DPDSe on ethanol-

induced lipid peroxidation  
 
Fig. 2 shows that ethanol intoxication causes 
increase in lipid peroxidation by 1.5 times and 
DPDSe pre-treatment markedly mitigates 
ethanol induced lipid peroxidation in ethanol 
intoxicated rats by 1.3 times while post- 
treatment has no significant effect on lipid 
peroxidation induced by ethanol intoxication. 
 
3.1.3 Influence of DPDSe on ethanol-induced 

reduction in non-protein thiol 
 
Fig. 3 shows that ethanol intoxication causes 
reduction in non-protein thiol by 1.5 times and 
that both pre- and post- DPDSe treatments 
markedly reverse the ethanol- induced decrease 
in the in vivo thiol level by 1.7 and 1.6 times 
respectively. 
 
3.1.4 Influence of DPDSe on ethanol-induced 

elevated NTPDase activity 
 
Fig. 4 shows that ethanol intoxication causes 
elevation in NTPDase activity by 1.1 times in 

relation to the control   group and that both pre- 
and post- DPDSe treatments markedly 
decreases the activity of the enzyme in ethanol 
induced group by 1.4 and 1.5 times respectively. 
 
3.1.5 Influence of DPDSe on ethanol-induced 

elevated Nucleotidase activity 
 
Fig. 5 shows that ethanol intoxication causes 
elevation in Nucleotidase activity by 2.3 times in 
relation to the control group and that both pre- 
and post-DPDSe treatments markedly decrease 
the activity of the enzyme in ethanol induced 
group by 1.9 and 2.1 times respectively. 
 

3.2 Influence of Diphenyl Diselenide and 
Alcohol on Expression of Antioxidant 
and Pro-Inflammatory Genes 

 
3.2.1 Influence of DPDSe on ethanol-induced 

downregulation of Nrf2 
 
Fig. 6 shows that ethanol intoxication causes a 
downregulation in the expression of Nrf2 by 0.8 
times in relation to the control group and that 
post-treatment of the ethanol-induced animals 
with DPDSe markedly upregulate the expression 
of the gene while the DPDSe pre-treatment do 
not have any stimulatory effect on the 
expression of the gene. 
 
3.2.2 Influence of DPDSe on ethanol-

induced downregulation of Nrf2 
 
Fig. 7 shows that ethanol intoxication causes an 
upregulation in the expression of NF-kB by 0.9 
times in relation to the control group and that 
post-treatment of the ethanol-induced animals 
with DPDSe markedly downregulated the 
expression of the gene by 2.3 times while the 
DPDSe pre-treatment do not have any 
downregulatory effect on the expression of the 
gene. 
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Fig. 1. Influence of DPDSe pre- and post- treatment on total thiol level in liver of acute ethanol-
intoxicated male Wistar rats. ap<0.0001 significant difference compared to control bp<0.0001 

significant difference compared to DPDSe Cp<0.0001 significant difference compared to 
ethanol 
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Fig. 2 Influence of DPDSe pre- and post- treatment on lipid peroxidation in liver of acute 
ethanol-intoxicated male Wistar rats. ap<0.0001 significant difference compared to control 

bp<0.0001 significant difference compared to DPDSe Cp<0.0001 significant difference 
compared to ethanol 
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Fig. 3. Influence of DPDSe pre- and post- treatment on non-protein thiol level in liver of acute 

ethanol-intoxicated male Wistar rats. ap<0.0001 significant difference compared to control 
bp<0.0001 significant difference compared to DPDSe Cp<0.0001 significant difference 

compared to ethanol 
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Fig. 4. Influence of DPDSe pre- and post- treatment on activity of NTPDase in liver of acute 
ethanol-intoxicated male Wistar rats. ap<0.0001 significant difference compared to control 

bp<0.0001 significant difference compared to DPDSe Cp<0.0001 significant difference 
compared to ethanol 
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Fig. 5. Influence of DPDSe pre- and post- treatment on the activity of Nucleotidase in liver of 
acute ethanol-intoxicated male Wistar rats. ap<0.0001 significant difference compared to 

control bp<0.0001 significant difference compared to DPDSe Cp<0.0001 significant difference 
compared to ethanol 

 

 
 

Fig. 6. Influence of DPDSe pre- and post- treatment on Nrf2 in liver of acute ethanol-
intoxicated male Wistar rats. ap<0.0001 significant difference compared to control bp<0.0001 

significant difference compared to DPDSe Cp<0.0001 significant difference compared to 
ethanol 
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β-actin              
 
 
 
 

 
 
 

Fig. 7. Influence of DPDSe pre- and post- treatment on NFKB in liver of acute ethanol-
intoxicated male Wistar rats. ap<0.0001 significant difference compared to control bp<0.0001 

significant difference compared to DPDSe Cp<0.0001 significant difference compared to 
ethanol 

 

4. DISCUSSION 
 
Redox imbalance is a hallmark of ethanol 
intoxication in the liver of male Wistar rats, and 
diphenyl diselenide (DPDSe) has been shown to 
improve antioxidant status, reverse altered 
activities of purinergic enzymes, and modulate 
the expression of redox-sensitive genes. When 
the redox balance shifts in favor of oxidants, 
macromolecules such as lipids, proteins, and 
DNA are vulnerable to oxidative damage, which 
is a key indicator of oxidative stress [25,26]. 
Lipid oxidative damage occurs when reactive 
oxygen species (ROS) abstract hydrogen from 
polyunsaturated fatty acids (PUFAs), leading to 
lipid peroxidation and subsequent cell 
membrane damage. This process releases 
malondialdehyde (MDA) and other reactive 
aldehydes, which form adducts with 
thiobarbituric acid (TBA). The MDA-TBA adduct 
can be measured spectrophotometrically at 532 
nm to quantify the extent of lipid peroxidation. In 
this study, elevated thiobarbituric acid reactive 

substances (TBARS) were observed in ethanol-
treated animals, which were significantly 
reduced by DPDSe treatment. The high TBARS 
levels in the ethanol group indicate that lipid 
biomolecules were oxidatively damaged, while 
the reduction in TBARS in the DPDSe-treated 
group suggests that DPDSe either enhanced 
antioxidant defense or repaired oxidative 
damage by donating hydrogen to stabilize 
PUFAs. 
 
In addition to measuring oxidative stress through 
lipid peroxidation and antioxidant capacity, 
assessing the activities of redox-responsive 
enzymes offers further insight. 5’-nucleotidase 
(5NT) and nucleoside triphosphate 
diphosphohydrolases (NTPDases) are crucial 
enzymes involved in nucleotide metabolism and 
are known to respond to oxidative stress. Their 
dysregulation can lead to various pathological 
conditions, making them targets for therapeutic 
interventions. Increased activities of these 
enzymes have been linked to ethanol-induced 
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oxidative stress, with serum 5NT levels being a 
marker of hepatobiliary disease [3]. Consistent 
with previous studies, this research 
demonstrated increased activities of 5’-
nucleotidase and NTPDase in the liver of 
ethanol-intoxicated rats, likely due to elevated 
levels of NADH driving ATP production and, in 
turn, increasing purinergic enzyme activity. 
However, DPDSe treatment reduced the 
activities of these enzymes in ethanol intoxicated 
rats, this reduction in activities of the enzyme by 
DPDSe may be due to its antioxidant properties 
which limits the oxidative stress thereby 
stabilizing the structure of the purinergic 
enzymes which are membrane enzymes, hence, 
protecting their activities by reducing the altered 
enzyme acticities that was heightened by 
oxidative stress. 
 

To investigate the mechanism by which DPDSe 
mitigates oxidative damage, the antioxidant 
capacity of untreated ethanol-intoxicated animals 
was compared with pre- and post-DPDSe-
treated animals by measuring reduced 
glutathione (GSH) levels. Since over 90% of 
non-protein thiols in rats are GSH [27], the 
observed decrease in thiol levels in ethanol-
treated animals suggests that thiols were 
consumed in stabilizing ethanol-induced free 
radicals. This finding aligns with previous studies 
showing that thiol oxidation is a key event in 
ethanol intoxication [28]. Both pre- and post-
DPDSe treatments elevated thiol levels, 
indicating that DPDSe either prevented thiol 
depletion or repaired oxidative damage by 
halting lipid peroxidation, thus sparing thiol 
groups. This confirms that ethanol intoxication is 
linked to oxidative stress and supports the 
antioxidant and hepatoprotective potential of 
DPDSe in mitigating ethanol-induced liver 
damage. 
 

Many endogenous antioxidants are gene 
products, and the protective effects of DPDSe 
against ethanol-induced oxidative stress may 
also occur at the molecular level. To explore this, 
the expression of the antioxidant gene Nrf2 was 
evaluated. Nrf2 is crucial in regulating 
antioxidant defenses and responding to oxidative 
insults [29]. In ethanol-intoxicated rats, Nrf2 
expression was downregulated, indicating that 
ethanol impairs the cell’s endogenous defense 
system at the molecular level, consistent with 
previous reports [30]. However, DPDSe 
treatment restored Nrf2 expression, showing that 
DPDSe can modulate cellular defense systems 
compromised by ethanol intoxication at the 
molecular level by detablizing the Nrf2-Keap1 

complex in the membrane so that Nrf2 can 
access the nucleus of the cell thereby 
influencing the transcription of genes that code 
for antioxidant enzymes such as catalase, 
superoxide dismutase. 
 
To further understand the molecular effects of 
ethanol on inflammation, the expression of 
nuclear factor kappa B (NF-kB), a key 
component of the inflammatory pathway,                 
was assessed. Ethanol intoxication                
upregulated NF-kB expression, while post-
treatment with DPDSe reduced its expression, 
highlighting the anti-inflammatory potential of 
DPDSe. 
 
Overall, this study demonstrates that DPDSe 
significantly reduces oxidative stress markers 
such as TBARS, downregulates NF-kB 
expression, increases total and non-protein thiol 
levels, and upregulates Nrf2 expression in the 
liver of ethanol-intoxicated rats. These findings 
confirm DPDSe's potent antioxidant and anti-
inflammatory properties, effectively reversing 
ethanol-induced oxidative damage. 
 

5. CONCLUSION 
 
Acute ethanol exposure remains a challenge due 
to its well-documented toxicity. This study 
reveals several toxic mechanisms of ethanol, 
including thiol oxidation, lipid peroxidation, 
downregulation of the antioxidant gene Nrf2, and 
upregulation of inflammatory pathways via NF-
kB. Diphenyl diselenide (DPDSe) has emerged 
as a promising agent for mitigating toxic effects 
of ethanol at various mechanisms studied. It 
effectively reverses ethanol-induced oxidative 
stress by modulating redox-sensitive 
transcription factors such as Nrf2 and NF-kB, 
reducing oxidative stress markers like TBARS, 
and enhancing antioxidant capacity by 
preserving non-protein and total thiol levels. 
Additionally, DPDSe ameliorates the effects of 
ethanol intoxication on purinergic enzymes, 
further supporting its potential as a therapeutic 
agent in managing the oxidative damage and 
inflammation associated with acute ethanol 
intoxication. 
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