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Abstract 
 

We introduce a new class of lifetime models called the transmuted powered moment exponential distribution. 
More specifically, the transmuted powered moment exponential distribution covers several new distributions. 
Survival analysis including survival function, hazard rate function and other related measures are computed. 
Analytical expressions for various mathematical properties of TPMED including rth moment, quantile 
function, inequality measures, and parameters are estimated by using maximum likelihood estimation and 
order statistics are also derived. A simulation study of the proposed distribution is performed. It is discovered 
that the Maximum Likelihood Estimators are consistent since the bias and Mean Square Error approach to 
zero when the sample size increases. The usefulness of the model associated with this distribution is 
illustrated by two real data sets and the new model provides a better fit than the models provided in literature.  
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1 Introduction 
 
An interesting method of adding a new parameter to an existing distribution that would offer more distributional 
flexibility [1-8]. We introduce a new class of lifetime models called the transmuted powered moment 
exponential distribution. The statistical development in the field of distribution theory [9-11] has long history 
but the forward-thinking in this field is transmuted techniques done by Shaw and Buckley (2009). Some 
mathematical properties of TPME distribution [12-14] including rth moment, quantile function, inequality 
measures, and parameters are estimated by using maximum likelihood estimation and order statistics are also 
derived [15,16]. Simulation study of proposed distribution is performed. Many statisticians gave some support 
of probability distributions in favour of above technique like  Patel [17], Mir [18], Mankhdum and  Nasiri [19], 
.Dara and Ahmed [20], Kharazmi et al., [21], Dey et al., [22], Okorie et al., [23]. 
 

2 Mathematical Properties 
 
A random variable X  is said to have transmuted powered moment exponential probability distribution denoted 

by TPME  with parameters , , 0    and 1 1   , if its CDF and PDF are given by 

 

       
2

 =  1 1 1 1 1
1

x x
G x x e x e

      
    

        
      

                          (2.1)  

 

      2 2 1
1 1 2 1 1 , , 0x xg x x e x e x

                 
 

  (2.2) 

 

where   is the shape parameter,  is location parameter and   the transmuting parameter, representing the 

different pattern of subject distribution 
 

  

  
 

Fig. 1. Plots of PDF of transmuted powered moment exponential distribution for different values of 
parameter 
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Fig. 2. Plots of CDF of transmuted powered moment exponential distribution for different values of 

parameter 
 

2.1 Hazard rate function 
 

If X  has TPME  ; , ,x    distribution, then the hazard rate function is given by 
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Fig. 3. Plots of hrf of transmuted powered moment exponential distribution for different values of 

parameter 
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2.2 Reverse hazard rate function 
 
Reverse hazard rate function is defined as 
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Fig. 4. Plots of reliability function of TPME distribution for different values of parameter 
 

2.3 Moments and central Moments 
 

If X  has the TPME  ; , ,x     distribution with     1  , then the rth moment of X  is given as follows 
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First four moments about origin can be respectively obtained by substituting 1, 2,3, 4r  in equation and are 

given as below  
 

i. If  1r   
then    1

1 1 1
1 2

1
2

1
1 2 2

2 2

E X
  

 
 




 

 
    

           
  
 

 

 

ii. If 2r   
then    2

2 2
2

2
2

1 2
1 2 1 2

2
2

E X
 


 






 
                    
  

 

 
 

iii. If 3r   
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iv. If 4r   then    4
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2

4
2
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 


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2.4 The variance, skewness and kurtosis 
 
Measures can now be calculated using the following relationships  
 

     /CV X Var X E X
 

 

 
3

2

3 2
/ ,Skewness X  

 
 

And   4

2
2

Kurtosis X





 
 

Table 1. Mean, Variance, coefficient of variation, Skewness and kurtosis 
 
 

� = 0.68, � = 2 ,λ = - 0.5

 

� = 2, � = 2, λ = -0.5 
/

1m
1.455 1.0361 

/

2m
 

3.96 1.1875 
/

3m
 

16.7499 1.4768 
/

4m
 

99.7855 1.9687 
2

2m 
1.85 0.1139 

3m
1.55 -1.14 

4m
 

39.19 0.039 

1b
 

0.6172 -29.63 

2b
 

11.44 3.03 
 

2.5 Moment generating function 
 
If a random variable X  follows TPME with the following PDF has the mgf as. 
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2.6 Quantile function 
 
The quantile function can be found with the help of Lambert W function: 
 
2.6.1  The Lambert W function: 
 
The quantile of the TPME distribution is found by using Lambert function (The lambert function has attracted a 
great deal of attention beginning with Lambert (1758) and Euler (1799)), name Lambert W function. 
 
Lambert W function has become a standard after its implementation in the computer algebra system Maple in 
the 1980s and subsequent publication by Corless et al. (1996) of a comprehensive survey of the history, theory 
and applications of this function. The Lambert W function is a multivalve complex function defined as the 
solution of the equation 
 

    expW z W z z    

Where z  is a complex number, if z  is a real number such that 
1

z
e

  then  W z becomes a real function 

and there are two possible real branches. The real branch taking on values in  , 1   is called the negative 

branch and denoted by 1W . The real branch taking on values in  1,  is called the principal branch and 

denoted by 0W . 

 

     
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     
 

 2 1 0u u p      ,where 1 (1 ) xx e u
     , the explicit function for quantile function can be 

found by using Lambert W function. 
 

2.7 Maximum likelihood estimator of TPME 
 

Let 1 2, ,.........., nx x x  be the random samples of size � from the TPME distribution. Then the log-likelihood 

function of is given by 
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Taking partial derivatives w.r.t to �, λ 
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1 1 1
ln ( ) ln ( ) ln ( )

0
x x xg g g

  

  
  

    
 
The value of estimates of �, and λ can never be estimates analytically. The MLE (Maximum likelihood 
Estimate) is obtained by solving the non-linear system. The solution of this non-linear system of equations does 
not have a closed form, but can be found numerically by using software such as MATHEMATICA, MAPLE 
and R. 
 

2.8 Vitality function 
 
The vitality function of the pdf (2.2) is defined as: 
 

 V  = E X X > x x    
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2.9 Mean residual function 
 
The mean residual function of the pdf (2.2) is defined as: 
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2.10 Scaled total Time function 
 
The scaled total time of the pdf (2.1) is defined as: 
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2.11 Order Statistics 
 
The order statistics mostly appear in the problems of the estimation and testing. The application of extreme 
values is very common in reliability, meteorology, econometrics and various areas of research.  
 

The PDF
 
 TPME; jXg x of jth  order statistic  jX   is  
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3 Simulation Study 
 
We adopt the Monte Carlo simulation study to access the performance of the MLE's of  , ,     through 

Mathematica 10.2 version. We generate different n sample observation from the quantile function above of the 
model TPME distribution. The parameters are estimated by maximum likelihood method. We considered 
different sample size = 20, 30, 50, 100, 300 and 500 and the number of repetition is 10000. The true parameters 

value as , ,    with three different sets of values, in Tables 2 and 3, of below shows the bias and mean 

squared error (MSE) of the estimate parameters at different parameter values. We observed that, when we 

increase sample sizes "n" the bias and Mean square error for the TPME model given below as:  , ,    

decreases with respect to the best estimation. 
 

Table 2.  The Bias and MSE on Monte Carlo simulation for parameters values of TPMED 
 

Parameter True value Sample size n Mean Bias MSE 
  2 20n   

30n   

50n   
100n   
300n   
500n   

2.2531 
2.2401 
2.2032 
2.1352 
2.0917 
2.0039 

0.2531 
0.2401 
0.2032 
0.1352 
0.0917 
0.0039 

1.1341 
1.0914 
0.9912 
0.9355 
0.6225 
0.4015 

  3 20n   

30n   
50n   
100n   
300n   

500n   

3.2641 
3.2324 
3.2131 
3.2015 
3.0636 
3.0419 

0.2641 
0.2324 
0.2131 
0.2015 
0.0636 
0.0419 

0.9845 
0.8434 
0.7694 
0.7215 
0.6319 
0.2726 

  3 20n   
30n   
50n   
100n   
300n   
500n   

3.3215 
3.2525 
3.1849 
3.1219 
3.1514 
3.0323 

0.3215 
0.2525 
0.1849 
0.1219 
0.1514 
0.0323 

0.8624 
0.8117 
0.7019 
0.6442 
0.4610 
0.1112 

 
Table 3. The Bias and MSE on monte carlo simulation for parameters values for TPMED 

 

Parameter True value Sample size n Mean Bias MSE 
  2 20n   

30n   
50n   
100n   
300n   
500n   

2.2885 
2.2532 
2.2475 
2.1238 
2.0832 
2.0105 

0.2885 
0.2532 
0. 2475 
0.1238 
0.0832 
0.0105 

0.9212 
0.8734 
0.8578 
0.7296 
0.3657 
0.1747 

  3 20n   
30n   
50n   
100n   
300n   
500n   

3.3184 
3.2701 
3.2268 
3.1993 
3.1234 
2.9826 

0.3184 
0.2701 
0.2268 
0.1993 
0.1234 
-0.0174 

1.0413 
0.9131 
0.8264 
0.7462 
0.4319 
0.1135 

  0.5 20n   
30n   
50n   
100n   
300n   
500n   

0.6821 
0.6674 
0.6521 
0.5523 
0.5176 
0.5069 

0.1821 
0.1674 
0.1521 
0.0523 
0.0176 
0.0069 

0.3764 
0.3426 
0.3215 
0.1269 
0.1145 
0.0285 
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Given first three sample moments, the corresponding  , ,    values are estimated from the actual 

theoretical first three population moments derived from (The sampling distributions of estimated 

 , ,    are given in Table 4 based on various sample sizes. For small samples, the percentage of 

estimates falling in the indicated interval increases with larger sample size. Using this range, we estimate  by 
the method of moments. If we include omitted data, we expect larger Mean Square Error (MSE). This MSE, 
however, decreases with increasing sample size 
 

Table 4. Percentage of sample estimates of  , ,    through method of moments (MM) for the 

TPME model 
 

N % estimated values of 
parameter in indicated interval 

with 2   

% estimated values of 
parameter in indicated 

interval with 3   

% estimated values of 
parameter in indicated 

interval with 0.5   

 ˆ1.4 2.6   ˆ2.5 3.5   0.3 0.7


   
30 88.68% 85.28% 80.52% 
50 92.64% 91.26% 86.52% 
100 97.45% 94.94% 89.71% 
250 98.02% 97.62% 94.76% 
500 99.64% 99.23% 96.89% 

 

Table 5. Percentage of sample estimates of  , ,    through method of moments (MM) for 

theTPME model 
 
N % estimated values of 

parameter in indicated interval 

with 2   

% estimated values of 
parameter in indicated 

interval with 3   

% estimated values of 
parameter in indicated 

interval with 0.5   

 ˆ1.4 2.6   ˆ2.5 3.5   0.3 0.7


   
30 89.67% 88.38% 83.12% 
50 95.32% 93.45% 86.34% 
100 98.67% 95.14% 89.67% 
250 99.12% 98.62% 97.25% 
500 99.89% 99.61% 98.37% 
    

4 Application 
 
In this section, the flexibility of some special models of TPME is examined using three real data sets. We 
illustrate the superiority of new selected distribution as compared with some sub-models. 
  
Based on the maximum-likelihood method, the unknown parameters of each distribution are estimated. Some 
selected measures as; Akaike information criterion (AIC), Bayesian information criterion (BIC), the correct 
Akaike information criterion (CAIC), and the Kolmogorov-Smirnov (k-s) are obtained to compare the fitted 
models (as seen in Table 1). The mathematical form of these measures is as follows: 
 

2 ( 1)
2 2 ln , ,

1

k k
AIC k L CAIC AIC

n k


   

 
 

 

ln( ) 2 ln ,BIC k n L 
 

 

Where k  is the number of models parameter, n  is the sample size and Lln  is the maximized value of the log- 
likelihood function under the fitted models. 
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Also,  )()(sup yFyFsk ny  , where 
n

yFn

1
)(   (number of observation y ), and )( yF denotes 

the cdf. The best distribution is the distribution corresponding to the lower values of, AIC, AICC,-2ln l, and k-s 
statistics. The results for mentioned measures for all models are reported in Tables. 
  

4.1 First data set 
 
The first data set represents the survival times (in days) of 72 guinea pigs infected with virulent tubercle bacilli, 
observed and reported by Bjerkedal (1960). The data are as follows:  
 
0.1, 0.33, 0.44, 0.56, 0.59, 0.59, 0.72, 0.74, 0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 1.07, 1.08, 1.08, 1.08, 1.09, 
1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 1.46, 1.53, 1.59, 1.6, 1.63, 1.68, 
1.71, 1.72, 1.76, 1.83, 1.95, 1.96, 1.97, 2.02,  2.13,  2.15,  2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 2.78, 
2.93, 3.27,  3.42, 3.47, 3.61, 4.02, 4.32, 4.58, 5.55,  2.54, 0.77. 
 

Table 6. Criteria for comparison for first data set 
 

Model sk   AIC  CAIC  -2lnL 
TPME 0.075 194.35 194.70 188.354 
PL 0.084 196.796 196.85 192.66 
PME 0.352 254.11 254.18 250.0116 
KSPME 0.0843 196.89 197.4 188.796 

 
For the first data set, the values of k-s,AIC, BIC and CAIC are record in Table 6. 
 
The plots of the estimated cumulative and estimated densities of the fitted models are achieved in Figs.5 and 6 
respectively. 
 

  
 

Fig. 5. Plots of PDF and CDF of transmuted powered moment exponential distribution for first data set 
 

4.2 2nd Data set 
 
The data was extracted from (Abdul-Moniem and Seham 2015) and it has previously been used by Barlow et al., 
(1984), the data is as follows; Owoloko et al. Springer Plus (2015) 4:818 DOI 10.1186/s40064-015-1590-6 
 

0.0251, 0.0886,  0.0891, 0.2501, 0.3113, 0.3451, 0.4763, 0.5650, 
0.5671, 0.6566, 0.6748, 0.6751, 0.6753, 0.7696, 0.8375, 0.8391, 
0.8425, 0.8645, 0.8851, 0.9113, 0.9120, 0.9836,     1.0483, 1.0596, 
1.0773,  1.1733, 1.2570,  1.2766,  1.2985,  1.3211,  1.3503,  1.3551, 
1.4595, 1.4880,  1.5728,  1.5733,  1.7083,  1.7263,  1.7460,  1.7630, 
1.7746,  1.8275,  1.8375,  1.8503, 1.8808,  1.8878,  1.8881,  1.9316, 
1.9558,  2.0048,  2.0408, 2.0903,  2.1093,  2.1330,  2.2100,     2.2460, 
2.2878,  2.3203,  2.3470,  2.3513,  2.4951,  2.5260,  2.9911,  3.0256, 
3.2678,  3.4045,     3.4846,  3.7433,  3.7455,  3.9143,  4.8073,  5.4005, 
5.4435,  5.5295,  6.5541,  9.0960. 
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Fig. 6. The Q-Q plots for first data set 
 

Table 7. Criteria for comparison for 2nd data set 
 

Model sk   AIC  CAIC  -2lnL 
TPME 0.065 193.35 193.70 178.254 
PL 0.094 195.796 197.85 194.66 
PME 0.452 253.11 255.18 249.0116 
KSPME 0.0943 197.89 198.4 198.796 

 
For the 2nd data set, the values of k-s,AIC, BIC and CAIC are record in Table 7. 
 

 
 

 
Fig. 7. Plots of PDF and CDF of transmuted powered moment exponential distribution for 2nd data set 
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Fig. 8. The Q-Q plots for 2nd data set 
 

Table 8. The eztimeted values of parameters with respective S.E 
 
 Estimated values S.E

 




 
1.2840 0.1161 




 0.7269 0.1472 




 
0.5706 0.4098 

  

5 Conclusion 
 
We introduce a new class of lifetime models called the transmuted powered moment exponential distribution. 
More specifically, the transmuted powered moment exponential distribution covers several new distributions. 
Various basic properties of TPME distribution are derieved.Survival analysis including survival function, hazard 
rate function and other related measures are computed. Parameters are estimated using the technique of 
Maximum Likelihood Estimation (MLE) [24-31].The new distribution was applied to a real data set. This model 
provides a better fit than several other related models. Also, mathematical properties of the new family, 
including expressions for density function, moments, moment generating function, quantile function, are 
provided. The hazard rate function has various shapes such as constant, increasing, decreasing, and bathtub. By 
simulation procedures it is discovered that the ML estimators are consistent since the bias and MSE approach to 
zero when the sample size increases. The usefulness of the model associated with this distribution is illustrated 
by two real data sets and the new model provides a better fit than the models provided in literature. 
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