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ABSTRACT 
 

This research was devoted to the analytical study of heat transfer by natural convection in a vertical 
cavity, confining a porous medium, and containing a heat source. The porous medium is 
hydrodynamically anisotropic in permeability whose axes of permeability tensor are obliquely 
oriented relative to the gravitational vector and saturated with a Newtonian fluid. The side walls are 
cooled to the temperature ��

�  and the horizontal walls are kept adiabatic. An analytical solution to 
this problem is found for low Rayleigh numbers by writing the solutions of mathematical model in 
polynomial form of degree n of the Rayleigh number. Poisson equations obtained are solved by the 
modified Galerkin method. The results are presented in term of streamlines and isotherms. The 
distribution of the streamlines and the temperature fields are greatly influenced by the permeability 
anisotropy parameters and the thermal conductivity. The heat transfer decreases considerably 
when the Rayleigh number increases. 
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NOMENCLATURES 
 
a, b, c  : Constants 
�  : Aspect ratio of the cavity 
��  : Approximate function 
�⃗  : Vector gravity field 
� �  : Height of the cavity 
�,�  : Index 

���  : Second-order permeability tensor 

��,��  : Flow permeability along the principal axes 
� ∗  : Permeability ratio 
���,���  : Thermal conductivity 

�∗  : Thermal conductivity ratio 
��  : Thickness of the cavity 
��,��,…,���  : Functions 
��  : Overall Nusselt number 
��  : Pressure of the saturating vapor 
��  : Rayleigh number 
��  :  Constant volumetric heat generation 
��,��,��,…  : Temperature perturbation functions 
��  : Dimensional fluid temperature 
��
�  : Dimensional temperature at left vertical wall 

��
�   : Dimensional temperature at right vertical wall 

�   : Dimensionless fluid temperature  
∆�� = (��

� − ��
�)  : Temperature difference scale 

��,��  : Dimensional velocities in x and y directions 
�,�  : Dimensionless velocities in � and � directions 

��⃗ �  : Vector velocity of filtration of the fluid in porous medium 
��  : Dimensional Cartesian coordinate measured along the vertical wall of the cavity 
��  : Dimensional Cartesian coordinate measured along the bottom wall of the cavity 
�,�  : Dimensionless Cartesian coordinates 
���  : Thermal diffusivity tensor 
��,��  : Functions 
�  : Coefficient of thermal expansion of fluid 
�  : Dynamic viscosity of the fluid 
�  : Kinematic viscosity of the fluid 
�,�,�,�  : Characteristic roots, functions 
�  : Density of the fluid 
��  : Approximate function 

������  : Heat capacity of the fluid 

�  : Dimensionless stream function 
��,��,��,…  : Perturbation stream function 
 

1. INTRODUCTION 
 
The heat transfer through natural convection 
induced by an internal heat source, in a vertical 
cavity filled with granular porous medium finds 
many applications in engineering. In order not to 
limit the field, we may be mentioned the heat 

extraction debris of nuclear fuel in nuclear 
reactors as well as the underground storage of 
radioactive waste. The same phenomenon is 
observed when examining of porous 
underground layers when we can expect a 
radioactive heating, either naturally or because of 
the proximity of nuclear waste. 
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The natural convection generated by an internal 
heat source is observed during drying and 
storage of granular agricultural products at 
sunset. So the agricultural products stored in the 
dryer are generated by metabolism. Due to the 
temperature difference between the interior of 
the cavity and the side walls, there is a natural 
convection where the air flow is directed 
downwardly in the vicinity of the vertical walls 
and upward in the central portion of the cavity 
.This exchange induced by internal heat source 
has been the subject of several researches in the 
past. Meffert and Potters [1], on the first hand 
and Rooda Eckman and Van Beckum [2] on the 
other hand, carried out calculations on cooling 
rates and temperature distributions in closed 
containers for the design of cold storage 
facilities. In the research, natural convection is 
neglected. The authors Hwang [3]; Buretta [4]; 
Sun [5]; Gabor et al. [6]; Gasser and Kazimi [7]; 
Hardee and Nilson [8] have also investigated on 
the effects of heat from internal sources in 
porous media. 
 

Bergholz [9] considered the convective flow in 
the boundary layer regime in a closed 
rectangular enclosure. The fluid constituting the 
heat source of internal heat is cooled by the side 
walls of the cavity. The author employed a 
computational procedure, based on the 
technique developed by Gill [10] which modified 
the Oseen linearization method to solve the 
system of equations valid for the boundary layer 
region. He discovered a bicellular circulation of 
the convective flux which occurs by its descent at 
the side walls in the boundary layer region and 
ascent in the central region. This increase 
generates a strong and stable vertical 
temperature gradient in the central region of the 
cavity. The distribution of heat flow over the side 
walls indicates that most of the internal heat is 
vented along the top half of the side wall. Natural 
convection with a uniform volumetric energy 
source in a confined fluid with insulated side and 
bottom walls and rigid top wall or free top 
surface, was analyzed numerically by Emara and 
Kulacki [11]. This authors obtained temperature 
profiles and Nusselt number within the fluid that 
were in good agreement with experiment data. 
Beukema et al. [12] continued the research for 
the storage of agricultural products, in developing 
a three-dimensional model to study the natural 
convection in a confined porous medium and 
filled with a heat source. 
 

Later, a theoretical study on the natural 
convection in a rectangular enclosure containing 
a uniform heat source and cooled by the side 

walls was realized by Haajizadeh et al. [13]. They 
obtained asymptotic solutions for low and high 
Rayleigh numbers. For low Rayleigh numbers, 
they solved the problem by using the modified 
Galerkin method to solve the obtained Poisson’s 
equations. Considering the high numbers of 
Rayleigh, they examined the boundary layer 
equations as well in the central region of the 
enclosure as close to sidewalls. A two-
dimensional numerical study of natural 
convection of air in a vertical or inclined square 
box was conducted by Acharva and Goldstein 
[14]. The cavity is heated from the outside and 
contains a uniformly distributed heat source. 
Prasad [15] conducted a numerical study of the 
permanent two-dimensional flow in a rectangular 
cavity filled with a porous medium and containing 
a heat source. The side walls are maintained 
isothermal and horizontal ones are adiabatic. 
The temperature at any place in the cavity 
increases with the Rayleigh number (Ra) and the 
rate of increase decreases with an increase in 
Ra and the aspect ratio A. The maximum 
temperature in the cavity increases constantly 
with A and Ra while the rate of increase 
decreases with this increase in A and Ra. The 
local Nusselt number on the side walls is a 
function of A, Ra and the boundary conditions. 
The heat transfer rates are close to those of the 
heated cavity by applying a uniform heat flow. 
Churbanov et al. [16] analyzed numerically by 
the finite difference method, the natural 
convection in a rectangular enclosure. The 
enclosure walls are isothermal or adiabatic and 
the fluid is a heat source. They made a 
comparison of the solutions obtained relating to 
experimental and numeric data obtained in the 
past. 
 
Recently, Kim and Hyun [17] studied numerically, 
convection induced by the buoyancy force, in a 
rectangular enclosure filled with a porous 
medium, heat, and saturated with a non-
Newtonian fluid. The side walls are cooled and 
the horizontal ones are adiabatic. The flow of 
non-Newtonian fluid through the porous medium 
is described by Darcy's equation. For a Rayleigh 
number and a given aspect ratio, compared to a 
Newtonian fluid, convective activity is more 
intense for n < 1 and less intense for n > 1. An 
increase of the aspect ratio weakens the 
convection. In addition, for an increase in the 
aspect ratio or the flow index n, the thermal flow 
changes to the boundary layer regime. 
 
This study describes the natural convection in a 
vertical porous cavity filled with a uniform heat 
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source and cooled side walls. The porous 
medium is supposed to be anisotropy in 
permeability and the main directions of 
permeability make an arbitrary angle with the 
vertical. An asymptotic solution is determined for 
low Rayleigh numbers. We examined the 
influence of the anisotropy in permeability and 
conductivity on the heat transfer. 
 

2. MATERIALS AND METHODS 
 

2.1 Description of the Physical Model 
 
We consider a two-dimensional vertical 
rectangular enclosure filled with a porous 
medium characterized by an anisotropic 
permeability with a constant volumetric heat 
generation ��, as shown in Fig. 1. The granular 

cereal products contained in the cavity represent 
the porous medium and the internal heat source 
is the combined result of the metabolism of the 
cereal products as well as the heat accumulated 
during the day. 
 
�� and �� are the width and the height, 
respectively, of the vertical rectangular enclosure 
with an aspect � = �. The horizontal walls are 
insulated and the vertical walls are at uniform 
temperature ��

� . The permeabilities along the two 
principal axes of the porous medium are denotes 
by ��  and  �� . The anisotropy of the porous 
medium is then represented by the anisotropy 
ratio �∗ = �� ��⁄  and the orientation angle � , 
defined as the angle between the horizontal 
direction and the principal axis with 
permeability ��. 

 

 
 

Fig. 1. Physical situation and coordinates system 
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2.2 Governing Equations 
 
The vertical rectangular enclosure boundary is 
assumed to be impermeable to the saturating 
fluid (air). The saturating fluid is incompressible, 
and its motion through the porous medium obeys 
Darcy’s law. The fluid and the porous medium 
are assumed to be in thermal equilibrium and the 
thermo-physical properties of the fluid are 
assumed constant, except for the density in the 
buoyancy term in the momentum equation 
(Degan and Vasseur [18]). 
 
Under these assumptions, the conservation 
equations for momentum and energy transfer 
can be written as (Bear [19]): 
 

∇��⃗ � = 0                                                                    (1) 
 

��⃗ � =
���

�
(−∇�� + ��⃗)                                           (2) 

 

∇ ∙���⃗ ��� − ���∇��� =
��

������

                            (3) 

 

In these equations, ���⃗ �,(��,��),���,�,��,�,���⃗ ,��,��,

��and ��� indicate Darcy-velocity vector, �� and �� 
component of Darcy velocity, permeability tensor 
of porous medium, dynamic viscosity, pressure, 
fluid density, gravitational acceleration, 
temperature, specific heat, constant volumetric 
heat generation and thermal conductivity tensor 
of the saturated porous medium, respectively. 

The second-order permeability tensor  ���  and 
thermal conductivity tensor ��� are defined as: 
 

��� = �
�����

�� + �����
�� (�� − ��)��������

(�� − ��)�������� �����
�� + �����

��
�    (4) 

 

��� = �
��� 0

0 ���
�                                                     (5) 

 
Introducing the Boussinesq approximation, 
 

� = ��[1− �(�� − ��
�)]                                       (6) 

 
eliminating the pressure term in the momentum 
equation in the usual way, and taking ��,���/�

� 

and  ���/�
���  as respective dimensional scales 

for length, velocity, and temperature, the 
governing equations may be written in non-
dimensional form as: 
 

�
���

���
− 2�

���

����
+ �

���

���
= −��

��

��
             (7) 

�
��

��
+ �

��

��
= �∗

���

���
+
���

���
+ 1                      (8) 

 
where �∗ is anisotropy of fluid thermal 
conductivity and �  is a dimensionless stream 
function defined as: 
 

� = −
��

��
,� =

��

��
                                               (9) 

 

such that equation (1) is identically satisfied. 
 

�

� = ����� + � ∗�����         

� = ����� + � ∗�����        

�= (1− � ∗)��������       

� ∗ = �� ��⁄ ,�∗ = ��� ���⁄  ⎭
⎪
⎪
⎬

⎪
⎪
⎫

                         (10) 

 

The Rayleigh number is defined as: 
 

�� =
�����

���
�

�������
                                                 (11) 

 

The corresponding boundary conditions can be 
written as: 
 

� = 0; 
��

��
= 0 at  � = 0,�                               (12) 

 
� = 0; � = 0 at  � = 0,1                                   (13) 

 

Where � = �� ��⁄  is the cavity aspect ratio. 
 
The dimensionless heat transfer across the 
enclosure filled with a porous medium is 
characterized by the Nusselt number defined as 
[11]: 
 

�� =
2

�
� �

��

��
�
���

��

�

�

                                      (14) 

 

Owing to the symmetry of the problem, the 
vertical center line is a stagnation streamline 
dividing the flow into two cells which are mirror 
images of each other. Consequently the present 
results can be employed as well for a 2-D porous 
enclosure cooled at only one vertical wall with 
other walls insulated [13]. 
 

3. SOLUTION BY PERTURBATION 
METHOD 

 
Let us consider now a solution by the regular 
perturbation method for this problem by 
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expanding the dependent variables �  and �, in 
the power series of  �� . An approximate 
analytical solution is presented for the case of 
convection at small Rayleigh number. 
 

� = � �����(�,�)

�

���

                                         (15) 

 

� = � �����(�,�)

�

���

                                           (16) 

 
The zeroth order solution for � �  and ��  are 
obtained from the following Poisson equations. 
 

��
��

���
− 2�

��

����
+ �

��

���
��� = 0              (17) 

 

��∗
��

���
+

��

���
� �� = −1                                  (18) 

 
It can be easily shown that 
 

�� = 0,�� = (−�� + �) 2⁄                              (19) 
 
Substitution of equations (15) and (16) into 
equations (7) and (8) and collection of the terms 
of equal power of �� , linear systems for the 
successive � �  and ��   may be obtained 
for � ≥ � : 
 

��
��

���
− 2�

��

����
+ �

��

���
��� = −

�����
��

 (20) 

 

��∗
��

���
+

��

���
��� = � �

���

��
∙
�

��
−
���

��
∙
�

��
�����

�

���

    (21) 

 

By using the modified Galerkin method 
(Kantorovich and Krylov [20]), the above series 
of Poisson equations are sequentially reduced to 
ordinary differential equations. 

The first order correction for � �  and ��  are 
obtained by the following Poisson equations. 
 

��
��

���
− 2�

��

����
+ �

��

���
��� = −

���
��

     (22) 

 

��∗
��

���
+

��

���
��� =

���

��
∙
���
��

                     (23) 

 

An approximate solution for � �can be found in 
the form 
 

��(�,�) = ��(�)��(�)                                     (24) 
 

where ��(�) is a function chosen a priori which 
satisfies boundary conditions 
 

��(�) = 0 on � = 0,1                                      (25) 
 

Substituting equation (24) into equation (22), we 
have 
 

�
����

���
= −

���
��

                                                 (26) 

 

��(�) may be obtained by integrating equation 
(26) as equation (27) 
 

��(�) = (2�� − 3�� + �) 12�⁄                     (27) 
 

Introducing equation (24) in the variational 
equation corresponding to the Poisson equation 
yields, the equation (28) can be obtained 
 

� ���
��

���
− 2�

��

����
+ �

��

���
���(�,�) +

���(�,�)

��
���(�)�� = 0  

�

�

(28) 

 

The equation (28) can be transformed into the 
following set of ordinary differential equation 
for ��(�): 
 

��
" − ���� = ��                                                    (29) 

 

where prime denotes differentiation with respect 
to �. 

 
After using the boundary conditions at � = �,�, the approximate solution for � �can be obtained as: 
 

��(�,�) = [���ℎ[�(� − �)]− ���ℎ(��)��+���ℎ(��)](2�� − 3�� + �) 12����ℎ(��)⁄                         (30) 
 

The solution for �� can be found by the similar method as: 
 

��(�,�) = �� �
�

���ℎ(��)
[���ℎ[�(� − �)]− ���ℎ(��)]��−

�

���ℎ(��)
[���ℎ[�(� − �)]− ���ℎ(��)]� 

× (−8�� + 24�� − 25�� + 10�� − �) 1440�⁄                            (31) 
 

The second-order solution of � � and �� are found by solving the following Poisson equations: 
 

��
��

���
− 2�

��

����
+ �

��

���
��� = −

���
��

                                                                                                             (32) 
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��∗
��

���
+

��

���
��� =

���

��
∙
���
��

−
���

��
∙
���
��

+
���

��
∙
���
��

                                                                                (33) 

 

The solution for equations (32) and (33) are given by: 
 

��(�,�) = ����
���ℎ(��) − 1

���ℎ(��)
+ ��

���ℎ(��) − 1

���ℎ(��)
� ×

���ℎ[�(� − �)]+ ���ℎ(��)

���ℎ(��)
� 

+  ���
���ℎ[�(� − �)]− ���ℎ(��)

���ℎ(��)
+ ��

���ℎ[�(� − �)]− ���ℎ(��)

���ℎ(��)
� 

× (−16�� + 56�� − 70�� + 35�� − 7�� + 2�) 20160��⁄                        (34) 
 

�� = ����
���ℎ(��) − 1

���ℎ(��)
+ ��

���ℎ(��) − 1

���ℎ(��)
� ×

���ℎ[�(� − �)]− ���ℎ(��)

���ℎ(��)
� 

+��
���ℎ[�(� − �)]− ���ℎ(��)

���ℎ(��)
+ ��

���ℎ[�(� − �)]− ���ℎ(��)

���ℎ(��)
 

+�� �
���ℎ[�(� − �)]− ���ℎ(��)

���ℎ(��)
� × �

���ℎ[�(� − �)]− ���ℎ(��)

���ℎ(��)
� 

+�� �
���ℎ[�(� − �)]− ���ℎ(��)

���ℎ(��)
� × �

���ℎ[�(� − �)]− ���ℎ(��)

���ℎ(��)
� 

+�� �
���ℎ[�(� − �)]− ���ℎ(��)

���ℎ(��)
�

�

+ ��� �
���ℎ[�(� − �)]− ���ℎ(��)

���ℎ(��)
�

�

 

�+ ����
���ℎ(��) − 1

���ℎ(��)
+ ���

���ℎ(��) − 1

���ℎ(��)
� × �

���ℎ[�(� − �)]+ ���ℎ(��)

���ℎ(��)
�� 

× (448��� − 2240�� + 4410�� − 4200�� + 1470�� +�882�� 
�−1155�� + 420�� − 35�) 50803200��⁄                                       (35) 

 

In the above equations �,�,� and � are the characteristic roots of the ordinary differential equations 
corresponding to � �,��,� � and �� respectively, and the functions ��,��,…,��� are dependent of the 
characteristic roots. The expressions of these characteristic roots and the functions are defined as the 
following: 
 

�

� = �42
�

�
; � = �

4758

421�∗
  

� = �
7460

157

�

�
  ; � = �

2380314

205087�∗

�� =
2188074

205087�∗
  ; �� =

63084

3061�∗
   

�� =
��

�∗(�� − ��)
 ; �� =

����
�

�(�� − ��)

�� = −
����

�

�(�� − ��)
 ; �� = −

����
�

�� − ��

�� = −
����

�

�� − ��
 ; �� =

�(����� + ���
�)

�� − ��

�� = −
�(����� + ���

�)

�� − ��
 

�� = −
����[��(�

� + �� − ��) + 2���
�]

(�� + �� − ��)� − 4����

�� =
���

�[��(�
� + �� − ��) + 2���

�]

(�� + �� − ��)� − 4����

�� =
����[��(2�

� − ��) + 2���
�]

(2�� − ��)� − 4��

��� = −
����[��(2�

� − ��) + 2���
�]

(2�� − ��)� − 4��

��� = −
−��� + �(�� − �� − 2�� − 2���) − ���

�

��� = −
−��� + �(�� + ��) − ���

� ⎭
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎫

                                                                                                          (36) 
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The important physical characteristic for this heat 
transfer describes the heat transfer rate across 
the enclosure expressed by the average Nusselt 
number of the cold wall. The Nusselt number can 
be obtained where we know the temperature 
field. In the dimensionless form, the Nusselt 
number is computed by the temperature gradient 
at � = �.  
 

�� = 1+ �
2

�
� �

���
��

�
���

��

�

�

����                (37) 

 
In the equation (14), the first-order term is always 
zero, because the integral of the temperature 

gradient in y direction from � = �  to � = �  is 
identically zero. 
 

4. RESULTS AND DISCUSSION 
 
This section is devoted to the discussion of the 
influence of conductivity anisotropy ratio �∗, the 
direction and the relative importance of maximum 
and minimum permeabilities. The different effects 
of anisotropy in permeability and thermal 
conductivity on perturbation functions � �,��,� � 
and �� are shown in Figs. 2 to 10, for a vertical 
shape ratio cavity  � = � . The perturbation 
functions are regularly spaced and are 
symmetrical relative to the mid-height of the 
cavity. 
 
Changes in perturbation functions � �,��,� � and 
�� when the permeability anisotropy ratio ranging 

from 0.01 to 100 for conductivity anisotropy ratio 
�∗ = �  and the orientation angle  � = ��°  are 
illustrated in Figs. 2 to 4. In these three figures, 
the distortion is more remarkable at the 
perturbation function  � � . Fig. 2 shows the 
streamlines and isotherms for a porous isotropic 
medium. These curve are similar to those 
obtained by Haajizadeh et al. [13]. In Fig. 2(a), 
the flow is bicellular and symmetrical along the 
mid-height. This behavior is due to the 
conduction temperature profile �� . In the upper 
part of the cavity, the fluid is hot enough                
and cannot dissipate the heat. The fluid 
temperature is then in this area greater than that 
of pure conduction. In the lower part of the      
cavity, the movement of the cold fluid to the 
bottom of the cavity, removes heat and its 
temperature is lower than the pure conduction 
temperature. 
 

The first order temperature �� shown in Fig. 2(b) 
is anti-symmetric compared to the mid-height. It 
is positive in the upper half and negative in the 
lower half of the cavity. Fig. 2(c) shows four 
identical cells which are symmetrical relative to 
the center of the cavity. In the upper half of the 
cavity, the second order function  � �  improves 
the flow and weakens it in the lower half. 
 

Figs. 3 and 4 show first-order isotherms which 
are asymmetrical with respect to the mid-height 
of the cavity. The isotherms are close to the half-
height for  �� > ��  and distant from the half 
height otherwise. The second order isotherms 
have three superposed cells. 

 

    
a b 

 
c d 

Fig. 2. Streamlines and isotherms for �∗ = �,�∗ = � ��� � = ��°: a) �� ����
� = � × ���� ; 

b) �����
= −�. �� × ����  ;�����

= �. �� × ���� ;c) �� ����
� = �. �� × ���� ; d) �����

= −�. �� × ����; 

�����
= �. �� × ���� 
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Fig. 3 shows the isotherms and streamlines 
when the anisotropic permeability ratio �∗ > 1, 
that is to say that the permeability in the            
vertical direction is smaller than the           
horizontal. The maximum values of, perturbation 
functions � �and � � decrease. An increase in the 
anisotropy ratio thus delays the flow of 
convection flows in the cavity. In addition, Fig. 3 
indicates that an increase in the anisotropic 
permeability ratio causes a slight detachment of 
the streamlines and isotherms of the vertical and 
horizontal walls which are concentrated in the 
center of the cavity. This behavior can be 
explained by the cooling fluid in the vertical walls 
of the cavity. 

The opposite phenomenon is observed when the 
permeability in the direction of �� is greater than 
that in the direction of  �� (�

∗ < 1 ) .In this 
situation the maxima of perturbation 
functions  � � and � � increase, creating an 
important convective flow. 
 

Fig. 4 indicates the streamlines  � � which are 
concentrated at the four corners of the cavity 
while those of � � are elongated in the vertical 
direction and glued to the vertical walls of the 
cavity. 
 

The influence of the anisotropy orientation 
angle �  on perturbation functions is shown in 
Figs. 5 to 8. 

 

    
a b 

 
c d 

Fig. 3. Streamlines and isotherms for�∗ = �,�∗ = ��� ��� � = ��°: a) �� ����
� = �. �� × ����; 

b) �����
= −�. �� × ����; �����

= �. �� × ����; c) �� ����
� = �. �� × �����; d) �����

= −�. �� ×

�����; �����
= �. �� × ���� 

 

    
a b 

 
c d 

Fig. 4. Streamlines and isotherms for�∗ = �,�∗ = �. �� ��� � = ��°: a) �� ����
� = �. �� × ����; 

b) �����
= −�. �� × ����, �����

= �. �� × ����; c) �� ����
� = �. �� × ����; d) �����

= −�. �� × ����, 

�����
= �. �� × ���� 
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Among these, the Figs. 5 and 7 describe the 
effect of the anisotropy angle  �  on the 
streamlines and isotherms  � �,��,� �  and                 
��  when the anisotropy ratios permeability              
 �∗  and conductivity �∗ are kept constant 
(�∗ = ��� and �∗ = �). For or � = �° or � = ��°, 
the perturbation function � �  has a symmetric 
bicellular model of the fluid in the vertical                
while perturbation function of second order                  
� �  gives four identical cells and symmetrical 
relative to the center of the cavity.                             
The isothermal  ��  are anti-symmetrical                    

about the mid-height of the cavity                  
 (� = �/�). 
 
The temperature field  ��  shows a remarkable 
change when �  goes from  �°  to  ��° . The 
maximum values of perturbation functions 
(� �,� �) decrease as the value of the angle of 
orientation of anisotropy increases. Fig. 6 
(� = �° , �∗ < 1) and Fig. 8 (� = ��° , �∗ > 1) 
illustrate perturbation functions who are similar to 
those shown respectively in Fig. 7 ( � =
��°, �∗ > 1) and Fig. 5 (� = �°, �∗ < 1). 

 

    
a b 

 
c d 

Fig. 5. Streamlines and isotherms for�∗ = �,�∗ = ��� ��� � = �°: a) �� ����
� = �. � × ����; 

b) �����
= −�. �� × ����, �����

= �. �� × ���� ; c) �� ����
� = �. �� × ���� ; d) �����

= −�. �� × ����, 

�����
= �. �� × ���� 

 

    
a b 

 
c d 

Fig. 6. Streamlines and isotherms for �∗ = �,�∗ = �. �� ���  � = �°: a) �� ����
� = � × ����; 

b) �����
= −�. �� × ����, �����

= �. �� × ����; c) �� ����
� = �. �� × ����; d) �����

= −�. �� × ����, 

�����
= �. �� × ���� 
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a b 

 
c d 

Fig. 7. Streamlines and isotherms for�∗ = �,�∗ = ��� ��� � = ��°: a) �� ����
� = �. �� × ����; 

b) �����
= −�. �� × ����   ; �����

= �. �� × ����  ; c) �� ����
� = �. �� × ����� ; d) �����

= −�. �� ×

�����  ; �����
= � × ����� 

 

    
a b 

 
c d 

Fig. 8. Streamlines and isotherms for�∗ = �,�∗ = �. �� ��� � = ��°: a) �� ����
� = �. �� × ���� ; 

b) �����
= −�. � × ����   , �����

= �. � × ���� c) �� ����
� = �. �� × ����  ; d) �����

= −�. �� × ���� ; 

�����
= �. � × ���� 

 
Figs. 9 and 10 show the isotherms (��and ��) 
and the streamlines of (� � and � � ) when the 
anisotropy ratio permeability and the angle of 
orientation of anisotropy are kept constant 
(�∗ = � , � = �° ) and the thermal conductivity 
anisotropy ratio varies from �. ��  to ��� . The 
structure of the heat flux generated by � �, does 
not change when  �∗ varies. This result is 
consistent with our expectations for that the 
expression of  � � which is independent of the 
conductivity anisotropy ratio (Eq. 30). 
 
When �∗ = �. ��, the elements of � � , ��and �� 
‘;[podisappear in the central region of the cavity 
and present only flattened cells to the upper and 

lower walls (� = � and � = �)  of the cavity. 
For  �∗ = ��� , the heat flux inside the cavity 
develops in the form of thermal boundary layer 
along the vertical cold wall. Except the 
perturbation function  � � , the reduction in the 
anisotropy ratio of thermal conductivity 
contributes to an increase in the maxima of the 
other perturbations functions. 
 
The effects of the orientation angle �  relating to 
the main axes of permeability of the porous 
medium on the average rate of heat transfer are 
shown in Fig. 11. There is a symmetry results 
with respect to � = ��° and this remark leads us 
to limit the discussion to the field angle � such 
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as  � < � < ��° . Thus, the figure reveals that 
when the anisotropic permeability ratio is less 
than unity ( �� < �� ), the Nusselt number is 
maximum when the angle of orientation � = �° 
(Maximum permeability in the vertical direction) 
and minimum when � = ��°  (A minimum 
permeability in the vertical direction). The 
opposite is true when the anisotropy ratio 
permeability is greater than unity (�∗ > 1). Heat 
transfer by convection is minimal when the 
orientation angle � = �°  and maximum 
when � = ��°. 
 

Fig. 12 shows the effects of Rayleigh number               
on the Nusselt number for different values �  of 

the orientation angle �  for anisotropy ratios 
conductivity and permeability respectively �∗ = � 
and �∗ = ��   with the aspect ratio � = � .                  
We notice in this Fig. 12, an increasing                 
rate of the heat transfer when the orientation 
angle �  increases from � to ��°. Similarly, one 
can easily observe that the heat transfer rate 
decreases rapidly with increasing Rayleigh 
number that characterizes the effects of 
buoyancy force. This behavior is explained by 
the presence of a source of heat within                     
the cavity, which forces the fluid more heat 
inside, to move the colder side walls.                      
During this movement the fluid temperature 
decreases. 

 

    
a b 

 
c d 

Fig. 9. Streamlines and isotherms for�∗ = ���,�∗ = � ��� � = �°: a) �� ����
� = � × ����  ; 

b) �����
= −�. �� × ����    , �����

= �. �� × ���� ; c) �� ����
� = �. �� × ����  ; d) �����

= −�. �� ×

�����, �����
= � 

 

    
a b 

 
c d 

Fig. 10. Streamlines and isotherms for�∗ = �. ��,�∗ = � ��� � = �°: a) �� ����
� = � × ����  ; 

b) �����
= −�. �� × ����    ; �����

= �. �� × ���� ; c) �� ����
� = ����  ; d) �����

= −�. �� × ���� , 

�����
= �. �� × ���� 



Fig. 11. Effects of the inclination angle 
number, for

Fig. 12. Nusselt number variation as a function of 

 
Figs. 13 and 14 illustrate the variation of the heat 
transfer rate of fluid as a function of anisotropy 
ratio with respect to permeability 
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Effects of the inclination angle � and anisotropic permeability ratio �∗on Nusselt 

number, for �∗ = �,� = � ��� �� = �� 
 

 
Nusselt number variation as a function of �� for different values of orientation angle 

(�∗ = �,�∗ = �� ��� � = �) 

14 illustrate the variation of the heat 
transfer rate of fluid as a function of anisotropy 
ratio with respect to permeability �∗  and 

conductivity �∗. The curves show that the heat 
transfer by convection increases with an increase 
of anisotropy ratio and tend asymptotically 
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on Nusselt 

 

for different values of orientation angle � 

. The curves show that the heat 
transfer by convection increases with an increase 
of anisotropy ratio and tend asymptotically 



toward unity. It is noticed that, for a given value 
of the anisotropy ratio, the Nusselt number 
 

Fig. 13. Nusselt number variation as a function of 
��

Fig. 14. Nusselt number variation as a function of 
��
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toward unity. It is noticed that, for a given value 
of the anisotropy ratio, the Nusselt number 

increases with a decrease of the R
number.

 

Nusselt number variation as a function of �∗ for different values of Rayleigh number 
�� (�∗ = �,� = ��° ��� � = �) 

 

 

Nusselt number variation as a function of �∗ for different values of Rayleigh number 
�� (�∗ = �,� = ��° ��� � = �) 
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increases with a decrease of the Rayleigh 

 

for different values of Rayleigh number 

 

for different values of Rayleigh number 
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5. CONCLUSION 
 
We have studied the effects of anisotropy 
parameters in permeability and thermal 
conductivity of the heat transfer, in a vertical 
cavity filled with a porous medium saturated by a 
Newtonian fluid. The perturbation method is used 
to determine the streamlines, isotherms and heat 
transfer rate. Analyzing the results obtained, it 
emerges the following conclusions: 
 
 The distribution of the streamlines and the 

temperature fields in the vertical cavity are 
greatly influenced by the permeability 
anisotropy parameters (�∗,�) and thermal 
conductivity �∗. 

 The heat transfer in the cavity is minimum 
(maximum) when the main axis having        
the high permeability which is oriented 
parallel (perpendicular) to the gravity 
vector. 

 When increasing the Rayleigh number,         
the convective flow in the vertical                
cavity containing the heat source 
decreases. 
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